⑴求数列的通项公式;⑵设,若对恒成立,求实数的取值范围;⑶是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,=2=2. (1)求证:; (2)求证:∥平面; (3)求三棱锥的体积.
设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形。 (1)求椭圆的离心率; (2)若过点作此正方形的外接圆的切线在轴上的一个截距为,求此椭圆方程。
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点是的中点。 (1)求证:; (2)求证://平面.
已知过抛物线的焦点,斜率为的直线交抛物线于()两点,且. (1)求该抛物线的方程; (2)为坐标原点,为抛物线上一点,若,求的值.
已知椭圆,过左焦点F1倾斜角为的直线交椭圆于两点。求:弦AB的长。