如图,已知为平行四边形所在平面外一点,为的中点, 求证:平面.
根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年( 365天)的空气质量进行监测,获得的API数据按照区间 [ 0 , 50 ] , ( 50 , 100 ] , ( 100 , 150 ] , ( 150 , 200 ] , ( 200 , 250 ] , ( 250 , 300 ] 进行分组,得到频率分布直方图如下图.
(1)求直方图中 x 的值;
(2)计算一年中空气质量分别为良和轻微污染的天数;
(3)求该城市某一周至少有 2天的空气质量为良或轻微污染的概率.
(结果用分数表示.已知 5 7 = 78125 , 2 7 = 128 , 3 1825 + 2 365 + 7 1825 + 3 1825 + 8 9125 = 123 9125 , 365 = 73 × 5 )
已知向量 a = ( sin θ , - 2 ) 与 b = ( 1 , cos θ ) 互相垂直,其中 θ ∈ ( 0 , π 2 ) .
(1)求 sin θ 和 cos θ 的值;
(2)若 sin ( θ - φ ) = 10 10 , 0 < φ < π 2 ,求 cos φ 的值.
已知抛物线 C : x 2 = 2 py ( p > 0 ) 上一点 A ( m , 4 ) 到其焦点的距离为 17 4 .
(Ⅰ)求 p于 m的值;
(Ⅱ)设抛物线C上一点 p的横坐标为 t( t>0),过 p的直线交C于另一点 Q,交 x轴于 M点,过点 Q作 PQ的垂线交 C于另一点 N.若 MN是 C的切线,求 t的最小值;
已知函数 f x = x 3 + 1 - a x 2 - a a + 2 x + b ( a , b ∈ R ) .
(Ⅰ)若函数 f x 的图像过原点,且在原点处的切线斜率是-3,求a,b的值;
(Ⅱ)若函数 f x 在区间 - 1 , 1 上不单调,求a的取值范围.
设 S n 为数列 { a n } 的前 n项和, S n = k n 2 + n , n ∈ N * ,其中 k 是常数.
(Ⅰ)求 a 1 及 a n ;
(Ⅱ)若对于任意的 m ∈ N * , a m , a 2 m , a 4 m 成等比数列,求 k的值.