根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年( 365天)的空气质量进行监测,获得的API数据按照区间 [ 0 , 50 ] , ( 50 , 100 ] , ( 100 , 150 ] , ( 150 , 200 ] , ( 200 , 250 ] , ( 250 , 300 ] 进行分组,得到频率分布直方图如下图.
(1)求直方图中 x 的值;
(2)计算一年中空气质量分别为良和轻微污染的天数;
(3)求该城市某一周至少有 2天的空气质量为良或轻微污染的概率.
(结果用分数表示.已知 5 7 = 78125 , 2 7 = 128 , 3 1825 + 2 365 + 7 1825 + 3 1825 + 8 9125 = 123 9125 , 365 = 73 × 5 )
(本小题满分12分)已知函数.(1)求函数的最小正周期和最大值;(2)求在R上的单调区间.
(本小题满分12分)已知函数 .(1)讨论函数的单调性;(2)当时,恒成立,求实数的取值范围;(3)证明:.
(本小题满分12分)已知点是椭圆的右焦点,点、分别是轴、轴上的动点,且满足.若点满足.(1)求点的轨迹的方程;(2)设过点任作一直线与点的轨迹交于、两点,直线、与直线 分别交于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.
如图,是圆的直径,点在圆上,,交于点,平面,,.(1)证明:;(2)求平面与平面所成的锐二面角的余弦值.
第26届世界大学生夏季运动会将于2011年11月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。