如图,在三棱柱中,点分别是的中点,为的重心,取三点中的一点作为点,是否存在一点,使得三棱柱恰有2条棱和平面平行,若存在,写出这个点;若不存在,说明理由.
集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0}, C={x|x2+2x-8=0}. (Ⅰ)若A=,求a的值; (Ⅱ)若A∩B,A∩C=,求a的值.
已知集合,求 (1)当时,中至多只有一个元素,求的取值范围; (2)当时,中至少有一个元素,求的取值范围; (3)当、满足什么条件时,集合为非空集合。
已知集合,, (1)若,求; (2)若,求实数a的取值范围.
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点. (Ⅰ)求该椭圆的标准方程; (Ⅱ)过原点的直线交椭圆于点,求面积的最大值.
已知圆:,直线与圆相交于,两点. (Ⅰ)若直线过点,且,求直线的方程; (Ⅱ)若直线的斜率为,且以弦为直径的圆经过原点,求直线的方程.