将长为L的木棒随机折成3段,求3段构成三角形的概率.
一个口袋中装有大小相同的2个白球和3个黑球。 (I)若采取放回抽样方式,每次摸出一球,从中摸出两球,求两球恰好颜色不同的概率; (II)若采取放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与均值。
已知向量,设(1)求函数的表达式,并求的单调递减区间;(2)在中,a,b,c分别是角A,B,C的对边,若,求a的值。
(15分)数列{an},a1=1,(1)求a2,a3的值;(2)是否存在常数,使得数列是等比数列,若存在,求出的值;若不存在,说明理由;(3)设,
(已知抛物线,过定点的直线交抛物线于A、B两点.(Ⅰ)分别过A、B作抛物线的两条切线,A、B为切点,求证:这两条切线的交点在定直线上.(Ⅱ)当时,在抛物线上存在不同的两点P、Q关于直线对称,弦长|PQ|中是否存在最大值?若存在,求其最大值(用表示),若不存在,请说明理由.
如图所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.(1)求异面直线PC与BD所成的角;(2)在线段PB上是否存在一点E,使PC⊥平面ADE?若存在,确定E点的位置;若不存在,说明理由.