(本小题满分13分)已知等比数列的公比为,前项和为,且,现若以为首项,以公比作为公差d构造新的等差数列(1)求通项(2)记,证明
如图所示,在长方体 A B C D - A 1 B 1 C 1 D 1 中, A B = A D = 1 , A A 1 = 2 ,M是棱 C C 1 的中点.
(Ⅰ)求异面直线 A 1 M 和 C 1 D 1 所成的角的正切值;
(Ⅱ)证明:平面 A B M ⊥ 平面 A 1 B 1 M 1
为了对某课题进行研究,用分层抽样方法从三所高校 A , B , C 的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(I)求 x , y ; (II)若从高校 B , C 抽取的人中选2人作专题发言,求这二人都来自高校 C 的概率。
已知函数 f x = sin 2 x - 2 sin 2 x
(I)求函数 f x 的最小正周期。 (II) 求函数 f x 的最大值及 f x 取最大值时 x 的集合。
设函数 f ( x ) = 1 - e - x . (Ⅰ)证明:当 x > - 1 时, f ( x ) ≥ x x + 1 ; (Ⅱ)设当 x ≥ 0 时, f ( x ) ≤ x a x + 1 ,求 a 的取值范围.
己知斜率为1的直线与双曲线:相交于、两点,且的中点为. (Ⅰ)求的离心率; (Ⅱ)设的右顶点为,右焦点为,,证明:过三点的圆与轴相切.