已知正三棱柱的各棱长都为,P为上的点,(1)若,求的值,使(2)若,求二面角的大小
(本小题满分14分)已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(Ⅰ)求此几何体的体积; (Ⅱ)求异面直线与所成角的余弦值; (Ⅲ)探究在上是否存在点Q,使得,并说明理由.
(本小题满分12分)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为、,记; (Ⅰ)求随机变量的分布列和数学期望; (Ⅱ)设“函数在区间上有且只有一个零点”为事件,求事件发生的概率.
(本题满分12分)已知向量,函数·, (Ⅰ)求函数的单调递增区间; (Ⅱ)如果△ABC的三边a、b、c满足,且边b所对的角为,试求的范围及函数的值域.
(本题满分14分)已知二次函数的图像过点,且,. (Ⅰ)求的解析式; (Ⅱ)若数列满足,且,求数列的通项公式; (Ⅲ)记,数列的前项和,求证: .
(本题满分14分) 如图,三角形ABC中,AC=BC=,ABED是边长为1 的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点. (Ⅰ)求证:GF//底面ABC; (Ⅱ)求证:AC⊥平面EBC; (Ⅲ)求几何体ADEBC的体积V.