已知关于的二次函数(1)设集合和分别从集合和中随机取一个数作为和,求函数在区间上是增函数的概率.(2)设点(a,b)是区域内的随机点,求函数在区间上是增函数的概率.
直线l过点M(1,1),与椭圆+=1交于P,Q两点,已知线段PQ的中点横坐标为,求直线l的方程.
直线l:y=mx+1,双曲线C:3x2﹣y2=1,问是否存在m的值,使l与C相交于A,B两点,且以AB为直径的圆过原点.
已知抛物线x2=4y,点P是抛物线上的动点,点A的坐标为(12,6),求点P到点A的距离与到x轴的距离之和的最小值.
抛物线顶点在原点,它的准线过双曲线﹣=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(,),求抛物线与双曲线方程.
抛物线的顶点是椭圆16x2+25y2=400的中心,而焦点是椭圆的右焦点,求此抛物线的方程.