等差数列{an}中a3=7,a1+a2+a3=12,记为{an}的前n项和,令bn=anan+1,数列的前n项和为Tn.(1)求an和Sn;(2)求证:Tn<;(3)是否存在正整数m , n ,且1<m<n ,使得T1 , Tm , Tn成等比数列?若存在,求出m ,n的值,若不存在,说明理由.
已知数列{}满足,是与的等差中项. (1)求数列{}的通项公式; (2)若满足,,求的最大值.
已知向量,设函数。 (1)求的最小正周期与单调递减区间。 (2)在中,、、分别是角、、的对边,若的面积为,求的值
(本小题满分14分) 已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立。 (Ⅰ)函数是否属于集合?说明理由; (Ⅱ)设函数,求的取值范围; (Ⅲ)设函数图象与函数的图象有交点,若函数. 证明:函数∈
(本小题满分12分) 设函数 (I)用五点法画出它在一个周期内的闭区间上的图象; (II)求函数f(x)的最小正周期及函数f(x)的最大值 (III)求函数f(x)的单调增区间。
(本小题满分12分)已知函数。 (I)判断并证明函数的奇偶性; (II)判断并证明函数在上的单调性; (III)求函数在上的最大和最小值。