2011年全国统一高考文科数学试卷(四川卷)
有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18
[27.5,31.5)1[31.5,35.5) 12[35.5,39.5)7 [39.5,43.5) 3
根据样本的频率分布估计,大于或等于31.5的数据约占()
A. | B. | C. | D. |
" "是" "的()
A. | 充分而不必要的条件 | B. | 必要而不充分的条件 |
C. | 充要条件 | D. | 既不充分也不必要的条件 |
, , 是空间三条不同的直线,则下列命题正确的是()
A. | , | B. | , |
C. | , , 共面 | D. | , , 共点 共面 |
某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往 地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为()
A. | 4650元 | B. | 4700元 | C. | 4900元 | D. | 5000元 |
在抛物线 上取横坐标为 的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆 相切,则抛物线顶点的坐标为
A. | B. | C. | D. |
在集合 中任取一个偶数 和一个奇数 构成以原点为起点的向量 ,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为 ,其中面积等于2的平行四边形的个数为 ,则 ()
A. | B. | C. | D. |
函数
的定义域为A,若
且
时总有
,则称
为单函数.例如,函数
是单函数.下列命题:
①函数
是单函数;
②指数函数
是单函数;
③若
为单函数,
且
,则
;
④在定义域上具有单调性的函数一定是单函数.
其中的真命题是.(写出所有真命题的编号)
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为
、
;两小时以上且不超过三小时还车的概率分别为
、
;两人租车时间都不会超过四小时.
(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率;
(Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.
如图,在直三棱柱 中, , ,延长 至点 ,使 ,连接 交棱 于 .
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的平面角的余弦值;
已知
是以
为首项,
为公比的等比数列,
为它的前
项和.
(Ⅰ)当
、
、
成等差数列时,求
的值;
(Ⅱ)当
、
、
成等差数列时,求证:对任意自然数
,
、
、
也成等差数列.
过点 的椭圆 的离心率为 ,椭圆与 轴交于两点 、 ,过点 的直线 与椭圆交于另一点 ,并与 轴交于点 ,直线 与直线 交于点 .
(I)当直线
过椭圆右焦点时,求线段
的长;
(Ⅱ)当点
异于点
时,求证: