过点 C ( 0 , 1 ) 的椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的离心率为 3 2 ,椭圆与 x 轴交于两点 A ( a , 0 ) 、 B ( - a , 0 ) ,过点 C 的直线 l 与椭圆交于另一点 D ,并与 x 轴交于点 P ,直线 A C 与直线 B D 交于点 Q .
(I)当直线 l 过椭圆右焦点时,求线段 C D 的长; (Ⅱ)当点 P 异于点 B 时,求证: O P ⇀ · O Q ⇀
(本题满分12分)如图所示,四棱锥的底面为直角梯形,,,,,底面,为的中点. (Ⅰ)求证:平面平面; (Ⅱ)求直线与平面所成的角; (Ⅲ)求点到平面的距离.
(本题满分12分) 已知函数. (Ⅰ)求的最小正周期; (Ⅱ)求的对称轴方程; (Ⅲ)求在区间上的最大值和最小值.
(本小题满分14分) 设数列的前项和为,已知,(为常数,,),且成等差数列. (1)求的值; (2)求数列的通项公式; (3)若数列是首项为1,公比为的等比数列,记,,.证明:.
(本小题满分14分) 已知的周长为,且,的面积为, (1)求边的长; (2)求的值.
(本小题满分14分) 某公司计划2010年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过180000元,甲、乙两个电视台的广告收费标准分别为元/分钟和元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为3000元和2000元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少元?