过点 C ( 0 , 1 ) 的椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的离心率为 3 2 ,椭圆与 x 轴交于两点 A ( a , 0 ) 、 B ( - a , 0 ) ,过点 C 的直线 l 与椭圆交于另一点 D ,并与 x 轴交于点 P ,直线 A C 与直线 B D 交于点 Q .
(I)当直线 l 过椭圆右焦点时,求线段 C D 的长; (Ⅱ)当点 P 异于点 B 时,求证: O P ⇀ · O Q ⇀
如图,设椭圆的左、右焦点分别为,点在椭圆上,,,的面积为. (1)求该椭圆的标准方程; (2)设圆心在轴上的圆与椭圆在轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..
已知函数的导函数为偶函数,且曲线在点处的切线的斜率为. (1)确定的值; (2)若,判断的单调性; (3)若有极值,求的取值范围.
如图,四棱锥中,底面是以为中心的菱形,底面,为上一点,且. (1)求的长; (2)求二面角的正弦值.
一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率; (2)表示所取3张卡片上的数字的中位数,求的分布列与数学期望. (注:若三个数满足 ,则称为这三个数的中位数).
已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为. (1)求和的值; (2)若,求的值.