过点 C ( 0 , 1 ) 的椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的离心率为 3 2 ,椭圆与 x 轴交于两点 A ( a , 0 ) 、 B ( - a , 0 ) ,过点 C 的直线 l 与椭圆交于另一点 D ,并与 x 轴交于点 P ,直线 A C 与直线 B D 交于点 Q .
(I)当直线 l 过椭圆右焦点时,求线段 C D 的长; (Ⅱ)当点 P 异于点 B 时,求证: O P ⇀ · O Q ⇀
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.求实数m的取值范围.
五个人站成一排,求在下列条件下的不同排法种数: (1)甲必须在排头; (2)甲、乙相邻; (3)甲不在排头,并且乙不在排尾; (4)其中甲、乙两人自左向右从高到矮排列且互不相邻.
分别写出下列命题的逆命题、逆否命题,并判断它们的真假: (1)若q<1,则方程x2+2x+q=0有实根; (2)若x2+y2=0,则x,y全为零.
已知函数 (1)若函数在上单调递减,在上单调递增,求实数的值; (2)是否存在实数,使得在上单调递减,若存在,试求的取值范围; 若不存在,请说明理由; (3)若,当时不等式有解,求实数的取值范围.
已知集合,, (1)若,求; (2)若,求实数a的取值范围.