如图,在直三棱柱 A B C - A 1 B 1 C 1 中, ∠ B A C = 90 ° , A B = A C = A A 1 = 1 ,延长 A 1 C 1 至点 P ,使 C 1 P = A 1 C 1 ,连接 A P 交棱 C C 1 于 D .
(Ⅰ)求证: P B 1 / / 平面 B D A 1 ; (Ⅱ)求二面角 A - A 1 D - B 的平面角的余弦值;
设数列{an}的前n项和为Sn,且方程x2﹣anx﹣an=0有一根为Sn﹣1,n=1,2,3,…. (Ⅰ)求a1,a2; (Ⅱ){an}的通项公式.
用数学归纳法证明不等式:+++…+>1(n∈N*且n>1).
已知函数f(x)=x3﹣x2++,且存在x0∈(0,),使f(x0)=x0. (1)证明:f(x)是R上的单调增函数; (2)设x1=0,xn+1=f(xn);y1=,yn+1=f(yn),其中n=1,2,…,证明:xn<xn+1<x0<yn+1<yn; (3)证明:<.
平面内有n条直线,其中无任何两条平行,也无任何三条共点,求证:这n条直线把平面分割成(n2+n+2)块.
已知Sn=1++++…+(n>1,n∈N*).求证:S2n>1+(n≥2,n∈N*).