已知 a n 是以 a 为首项, q 为公比的等比数列, S n 为它的前 n 项和. (Ⅰ)当 S 1 、 S 3 、 S 4 成等差数列时,求 q 的值; (Ⅱ)当 S m 、 S n 、 S l 成等差数列时,求证:对任意自然数 k , a m + k 、 a n + k 、 a l + k 也成等差数列.
(本小题满分10分)选修4-1:平面几何证明选讲 如图,在中,,以为直径的⊙交于,过点作⊙的切线交于,交⊙于点. (Ⅰ)证明:是的中点; (Ⅱ)证明:.
已知函数. (Ⅰ)若,求函数的极值; (Ⅱ)若在区间内有唯一的零点,求的取值范围.
设函数是定义域为的奇函数. (Ⅰ)求的值; (Ⅱ)若,且在上的最小值为,求的值.
设 (Ⅰ)计算:的值; (Ⅱ)猜想具备的一个性质,并证明.
(本小题满分12分)“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示. (Ⅰ) 完成2×2列联表;
(Ⅱ)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)
(参考公式:,)