高考数学总复习考点引领+技巧点拨第八章第1课时练习卷
有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点不共线,则此四点不共面.其中正确的命题是________.(填序号)
如图所示,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则
(1)当AC,BD满足条件________时,四边形EFGH为菱形;
(2)当AC,BD满足条件________时,四边形EFGH是正方形.
设P表示一个点,a,b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是________.(填序号)
①P∈a,P∈αaα;
②a∩b=P,bβaβ;
③a∥b,aα,P∈b,P∈αbα;
④α∩β=b,P∈α,P∈βP∈b.
画一个正方体ABCDA1B1C1D1,再画出平面ACD1与平面BDC1的交线,并且说明理由.
在长方体ABCDA1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.
(1)过P点在空间作一直线l,使l∥直线BD,应该如何作图?并说明理由;
(2)过P点在平面A1C1内作一直线m,使m与直线BD成α角,其中α∈,这样的直线有几条,应该如何作图?
如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分别为FA、FD的中点.
(1)证明:四边形BCHG是平行四边形.
(2)C、D、F、E四点是否共面?为什么?
如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:
(1)C1、O、M三点共线;
(2)E、C、D1、F四点共面.
已知A是△BCD平面外的一点,E,F分别是BC,AD的中点.
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.
已知四棱锥PABCD的顶点P在底面的射影恰好是底面菱形ABCD的两条对角线的交点,若AB=3,PB=4,则PA长度的取值范围为________.
给出下列四个命题:
①没有公共点的两条直线平行;
②互相垂直的两条直线是相交直线;
③既不平行也不相交的直线是异面直线;
④不同在任一平面内的两条直线是异面直线.
其中正确命题是________.(填序号)
如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中:
①GH与EF平行;
②BD与MN为异面直线;
③GH与MN成60°角;
④DE与MN垂直.
以上四个命题中,正确命题的是________.(填序号)
从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:
(1)矩形的4个顶点;
(2)每个面都是等边三角形的四面体的4个顶点;
(3)每个面都是直角三角形的四面体的4个顶点;
(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.
其中正确的结论有________个.
若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”)
若P是两条异面直线l、m外的任意一点,则下列命题中假命题的是________.(填序号)
①过点P有且仅有一条直线与l、m都平行;
②过点P有且仅有一条直线与l、m都垂直;
③过点P有且仅有一条直线与l、m都相交;
④过点P有且仅有一条直线与l、m都异面.
如图,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.
求证:M、N、K三点共线.