期中备考总动员高三数学模拟卷【江苏】1
设向量,,则“”是“”成立的 条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) .
现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为 .
(本小题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c.已知,.
(1)求的值;
(2)求的值;
(3)若,求△ABC的面积.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若AB BC,CP PB,求证:CP PA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.
如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?
(本小题满分15分)已知椭圆的右焦点,离心率为,过作两条互相垂直的弦,设的中点分别为.
(1)求椭圆的方程;
(2)证明:直线必过定点,并求出此定点坐标;
(3)若弦的斜率均存在,求面积的最大值.
已知函数,.
(1)设.
① 若函数在处的切线过点,求的值;
② 当时,若函数在上没有零点,求的取值范围;
(2)设函数,且,求证:当时,.
(选修4—1:几何证明选讲)
如图,已知点为的斜边的延长线上一点,且与的外接圆相切,过点作的垂线,垂足为,若,,求线段的长.
(选修4—2:矩阵与变换)
在平面直角坐标系xOy中,设曲线在矩阵对应的变换作用下得到曲线,求曲线的方程.
(选修4-4:坐标系与参数方程)
已知直线的极坐标方程为,圆的参数方程为为参数).
(1)请分别把直线和圆的方程化为直角坐标方程;
(2)求直线被圆截得的弦长.
(本小题满分10分)如图,在长方体中,,,与相交于点,点在线段上(点与点不重合).
(1)若异面直线与所成角的余弦值为,求的长度;
(2)若,求平面与平面所成角的正弦值.