(本小题满分15分)已知椭圆的右焦点,离心率为,过作两条互相垂直的弦,设的中点分别为.(1)求椭圆的方程;(2)证明:直线必过定点,并求出此定点坐标;(3)若弦的斜率均存在,求面积的最大值.
若且二项式按的降幂排列,展开后其第二项不大于第三项,求的取值范围。
已知函数, (1)若函数在处的切线方程为,求实数的值; (2)若在其定义域内单调递增,求的取值范围.
已知展开式中的二项式系数的和比展开式的二项式系数的和大,求展开式中的系数最大的项和系数最小的项.
现有9本不同的书,分别求下列情况的不同分法的种数。 (1)分成三组,一组4本,一组3本,一组2本; (2)分给三人,一人4本,一人3本,一人2本; (3)平均分成三组。
设函数f(x)=×,其中向量="(2cosx,1)," =(cosx,sin2x+m). (1)求函数f(x)的最小正周期和f(x)在[0, p]上的单调递增区间; (2)当xÎ[0]时,ô f(x)ô <4恒成立,求实数m的取值范围.