(选修4-4:坐标系与参数方程)已知直线的极坐标方程为,圆的参数方程为为参数).(1)请分别把直线和圆的方程化为直角坐标方程;(2)求直线被圆截得的弦长.
如图,已知正三棱柱—的底面边长是,是侧棱的中点,直线与侧面所成的角为.⑴求此正三棱柱的侧棱长;⑵求二面角的平面角的正切值;⑶求直线与平面的所成角的正弦值.
已知圆与直线相交于两点.⑴求弦的长;⑵若圆经过,且圆与圆的公共弦平行于直线,求圆的方程.
已知函数.(1)若关于的方程只有一个实数解,求实数的取值范围;(2)若当时,不等式恒成立,求实数的取值范围;(3)探究函数在区间上的最大值(直接写出结果,不需给出演算步骤).
已知两个不共线的向量满足,(1)若与垂直,求向量与的夹角;(2)当时,若存在两个不同的使得成立,求正数的取值范围.
已知函数(1)判断函数的单调性并用函数单调性定义加以证明;(2)若在上的值域是,求的值;(3)当,若在上的值域是 ,求实数的取值范围.