以O为原点,所在直线为轴,建立如 所示的坐标系。设,点F的坐标为,,点G的坐标为。(1)求关于的函数的表达式,判断函数的单调性,并证明你的判断;(2)设ΔOFG的面积,若以O为中心,F为焦点的椭圆经过点G,求当取最小值时椭圆的方程;(3)在(2)的条件下,若点P的坐标为,C、D是椭圆上的两点,且,求实数的取值范围。
((本小题满分13分)已知椭圆:,为其左、右焦点,为椭圆上任一点,的重心为,内心,且有(其中为实数)(1)求椭圆的离心率;(2)过焦点的直线与椭圆相交于点、,若面积的最大值为3,求椭圆的方程.
((本小题满分12分)已知四棱锥中平面,且,底面为直角梯形,分别是的中点.(1)求证:// 平面;(2)求截面与底面所成二面角的大小;(3)求点到平面的距离.
((本小题满分12分)设不等式确定的平面区域为,确定的平面区域为.(1)定义横、纵坐标为整数的点为“整点”,在区域内任取3个整点,求这些整点中恰有2个整点在区域的概率;(2)在区域内任取3个点,记这3个点在区域的个数为,求的分布列和数学期望.
(本小题满分12分)设数列满足且对一切,有.(1)求数列的通项公式;(2)设 ,求的取值范围.
(本小题满分12分)已知为坐标原点,其中为常数,设函数.(1)求函数的表达式和最小正周期;(2)若角为的三个内角中的最大角且的最小值为,求的值;(3)在(2)的条件下,试画出的简图.