(选修4—2:矩阵与变换)在平面直角坐标系xOy中,设曲线在矩阵对应的变换作用下得到曲线,求曲线的方程.
已知圆,(Ⅰ)若直线过定点(1,0),且与圆相切,求的方程;(Ⅱ)若圆的半径为3,圆心在直线:上,且与圆外切,求圆的方程.
如图,在平面直角坐标系中,已知平行四边形的三个顶点坐标:.(1)求边所在直线的方程(结果写成一般式);(2)证明平行四边形为矩形,并求其面积.
已知函数(1)求函数的最小正周期.(2)求函数的最大值及取最大值时x的集合并求函数的单调增区间.
(本小题满分16分)已知函数(a为常数).(Ⅰ)若,写出的单调增区间;(Ⅱ)若,设在区间上的最小值为,求的表达式;(Ⅲ)设,若函数在区间上是增函数,求实数a的取值范围.
(本小题满分16分) 已知函数是定义在上的奇函数.当时,,且图象过点与点.(Ⅰ)求实数的值,并求函数的解析式;(Ⅱ)若关于的方程有两个不同的实数解,请写出实数的取值范围;(Ⅲ)解关于的不等式,写出解集.