初中数学

小光准备从 A 地去往 B 地,打开导航、显示两地距离为 37 . 7 km ,但导航提供的三条可选路线长却分别为 45 km 50 km 51 km (如图).能解释这一现象的数学知识是 (    )

A.

两点之间,线段最短

B.

垂线段最短

C.

三角形两边之和大于第三边

D.

两点确定一条直线

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, AB = 2 E 为边 AB 上一点, F 为边 BC 上一点.连接 DE AF 交于点 G ,连接 BG .若 AE = BF ,则 BG 的最小值为   

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点 A ( 2 , 1 ) 到以原点为圆心,以1为半径的圆的距离为   

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E AB 的中点, P BC 边上的任意一点,把 ΔPBE 沿 PE 折叠,得到 ΔPFE ,连接 CF .若 AB = 10 BC = 12 ,则 CF 的最小值为  

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中, AB = 2 5 O BC 边的中点,点 E 是正方形内一动点, OE = 2 ,连接 DE ,将线段 DE 绕点 D 逆时针旋转 90 ° DF ,连接 AE CF

(1)求证: AE = CF

(2)若 A E O 三点共线,连接 OF ,求线段 OF 的长.

(3)求线段 OF 长的最小值.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在中,直径垂直于不过圆心的弦,垂足为点,连接,点上,且

(1)求证:

(2)过点的切线交的延长线于点,试判断是否相等,并说明理由;

(3)设半径为4,点中点,点上,求线段的最小值.

来源:2017年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是 (    )

A.两点之间线段最短

B.两点确定一条直线

C.垂线段最短

D.经过直线外一点,有且只有一条直线与这条直线平行

来源:2017年湖北省随州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AD = 12 AB = 8 E AB 上一点,且 EB = 3 F BC 上一动点,若将 ΔEBF 沿 EF 对折后,点 B 落在点 P 处,则点 P 到点 D 的最短距离为  

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,点 A ( a , 3 ) B ( b , 1 ) 都在双曲线 y = 3 x 上,点 C D ,分别是 x 轴, y 轴上的动点,则四边形 ABCD 周长的最小值为 (    )

A. 5 2 B. 6 2 C. 2 10 + 2 2 D. 8 2

来源:2017年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,已知 C 的半径为3,圆外一定点 O 满足 OC = 5 ,点 P C 上一动点,经过点 O 的直线 l 上有两点 A B ,且 OA = OB APB = 90 ° l 不经过点 C ,则 AB 的最小值为  

来源:2017年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, ΔABC 是等边三角形,点 D BC 边上一点, BD = 1 2 DC = 2 ,以点 D 为顶点作正方形 DEFG ,且 DE = BC ,连接 AE AG .若将正方形 DEFG 绕点 D 旋转一周,当 AE 取最小值时, AG 的长为  

来源:2019年辽宁省营口市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 BC = 2 M AD 边的中点, N AB 边上的动点,将 ΔAMN 沿 MN 所在直线折叠,得到△ A ' MN ,连接 A ' C ,则 A ' C 的最小值是  

来源:2019年辽宁省锦州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在矩形纸片 ABCD 中, AB = 2 AD = 3 ,点 E AB 的中点,点 F AD 边上的一个动点,将 ΔAEF 沿 EF 所在直线翻折,得到△ A ' EF ,则 A ' C 的长的最小值是  

来源:2017年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AC = 4 BC = 3 ,点 O AB 的三等分点,半圆 O AC 相切, M N 分别是 BC 与半圆弧上的动点,则 MN 的最小值和最大值之和是 (    )

A.5B.6C.7D.8

来源:2019年广西玉林市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

对下列生活现象的解释其数学原理运用错误的是(  )

A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理             

B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理             

C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理

D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理

来源:2016年湖南省永州市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

初中数学线段的性质:两点之间线段最短试题