初中数学

已知两个变量x、y满足关系2x-3y+1=0,试问:①y是x的函数吗?②x是y的函数吗?若是,分别写出y与x的关系式,若不是,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知二次函数图象的顶点坐标为M(1,0),直线与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在轴上.
求m的值及这个二次函数的解析式;
若P(,0) 是轴上的一个动点,过P作轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①当0<< 3时,求线段DE的最大值;
②若直线AB与抛物线的对称轴交点为N,
问是否存在一点P,使以M、N、D、E
为顶点的四边形是平行四边形?若存在,
请求出此时P点的坐标;若不存在,请
说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数为任意实数)
求证:不论为何值,该函数图象都过点(0,2)和(-2,0);
若该函数图象与轴只有一个交点,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

    
已知抛物线的解析式为
求抛物线的顶点坐标;
求出抛物线与x轴的交点坐标;
当x取何值时y>0?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题10分) 如图,直线与反比例函数的图象交于A,B两点.

(1)求的值?
(2)直接写出时x的取值范围?
(3)如图,等腰梯形OBCD中,BC//OD,OB=CD,OD边在x轴上,过点C作CE
⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,
请判断PC和PE的大小关系,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,以O为原点的直角坐标系中,A点的坐标为(0,3),直线x=-3交x轴于点B,P为线段AB上一动点,作直线PC⊥PO,交于直线x=﹣3于点C。过P点作直线MN平行于x轴,交y轴于M,交直线x=﹣3于点N。
(1)当点C在第二象限时,求证:△OPM≌△PCN;
(2)设AP长为m,以P、O、B、C为顶点的四边形的面积为S,请求出S与M之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=-3上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标,如果不可能,请说明理由。

 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

黄冈市三运会期间,武穴黄商有一种姚明牌运动装每件的销售价y(元)与时间x(周)之间的函数关系式对应的点都在如图所示的图象上,该图象从左至右,依次是线段AB、线段BC、线段CD,而这种运动装每件的进价Z(元)与时间x(周)之间的函数关系式为Z=(1≤x≤16且x为整数)

(1)写出每件的销售价y(元)与时间x(周)之间的函数关系式;
(2)设每件运动装销售利润为w,写出w(元)与时间x(周)之间的函数关系式;
(3)求该运动装第几周出销时,每件运动装的销售利润最大?最大利润为多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分8分)星期天,小明与小刚骑自行车去距家

50千米的某地旅游,匀速行驶1.5小时的时候,其中一
辆自行车出故障,因此二人在自行车修理点修车,用了
半个小时,然后以原速继续前行,行驶1小时到达目的
地.请在右面的平面直角坐标系中,画出符合他们行驶
的路程S(千米)与行驶时间t(时)之间的函数图象.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:

年   度
2001
2002
2003
2004
投入技改资金z(万元)
2.5
3
4
4.5
产品成本,(万元/件)
7.2
6
4.5
4

(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)按照这种变化规律,若2005年已投人技改资金5万元.
①预计生产成本每件比2004年降低多少万元?
②如果打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元(结果精确到0.01万元)?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知一次函数y=kx+b的图象交反比例函数
的图象于点A、B,交x轴于点C.
(1)求m的取值范围;
(2)若点A的坐标是(2,-4),且,求m的值和一次函数的解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点.求:
(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;
(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正比例函数与反比例函数相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且.过点A的一次函数与反比例函数的图象交于另一点C,与x轴交于点E(5,0).
(1)求正比例函数、反比例函数和一次函数的解析式;
(2)结合图象,求出当的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

将一张矩形纸片沿对角线剪开(如图1),得到两张三角形纸片(如图2),量得他们的斜边长为 6cm,较小锐角为30° ,再将这两张三角纸片摆成如图3的形状,且点 A、C、E、F 在同一条直线上,点 C 与点 E 重合, 保持不动,OB 为的中线,现对纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的沿CA向右平移,直到两个三角形完全重合为止.设平移距离 CE 为 x(即 CE 的长),求平移过程中,重叠部分的面积 S 与 x 的函数关系式,以及自变量的取值范围;
(2) 平移到 E 与O 重合时(如图4),将绕点 O 顺时针旋转,旋转过程中的斜边 EF交的 BC 边于 G,求点 C、O、G构成等腰三角形时,的面积;
(3)在(2)的旋转过程中, 的边 DE,EF分别交线段BC于点 G、H(不与端点重合).求旋转角为多少度时,线段BH、GH、CG之间满足 , 请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).
(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);
(3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;
(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系.

图a                    图b

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在一条直线上依次有ABC三个港口,甲、乙两船同时分别从AB港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为(km),x的函数关系如图所示.

(1)填空:AC两港口间的距离为    km,   
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学四种命题及其关系解答题