如图,AB为的直径,AB=AC,BC交于点D,AC交于点E.
(1)求证:BD=CD;
(2)若AB=8,∠BAC=45°,求阴影部分的面积.
如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.
(1)求∠C的大小;
(2)求阴影部分的面积.
已知,如图点A、B、C在⊙O上,AO∥BC,∠OBC=40°,求∠ACB的度数.
如图,已知在⊙O中,弦AB的长为8cm,半径为5 ㎝, 过O作OCAB求点O与AB的距离.
画图:
(1)如图,已知△ABC和点O.将△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;
(2)如图,AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺(只能画线)按要求画图.
(ⅰ)在图1中,画出△ABC的三条高的交点;
(ⅱ)在图2中,画出△ABC中AB边上的高.
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=DB,连结AC,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.
(1)在图1中,画出△ABC的三条高的交点;
(2)在图2中,画出△ABC中AB边上的高.(不必写出作图过程,但必须保留作图痕迹)
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C 、D ;
②⊙D的半径= (结果保留根号);
③∠ADC的度数为 .
④网格图中是否存在过点B的直线BE是⊙D的切线,如果没有,请说明理由;如果有,请直接写出直线BE的函数解析式。
(本题8分)如图,AB是⊙O的直径,C.D两点在⊙O上,若∠C=45°.
(1)求∠ABD的度数;
(2)若∠CDB=30°,BC=3,求⊙O的半径.
如图,半圆O直径DE=12,Rt△ABC中,BC=12,∠ACB=90°,∠ABC=30°.半圆O从左到右运动,在运动过程中,点D,E始终在直线BC上,半圆O在△ABC的左侧.
(1)当△ABC的一边与半圆O相切时,请画出符合题意得图形。
(2)当△ABC的一边与半圆O相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积
作图:
在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(0,﹣3).
(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;
(2)若直线l经过点D(﹣2,﹣2),E(0,﹣3),判断直线l与⊙P的位置关系.
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)CD为⊙O的切线吗,说明理由;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D(如图)
(1)求证:AC=BD
(2)若大圆的半径R=10,小圆半径r=8,且圆心O到直线AB的距离为6,求AC的长.