如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)判断AE与⊙O的位置关系,并说明理由;
(2)当BC=4,AC=3CE时,求⊙O的半径.
如图,点A、B、C在⊙O上,若∠BAC= 24°,则∠BOC= °.
如图,AB是半圆的直径,点D是弧AC的中点, ∠ABC=50°,则∠DAB等于( )
A.55° | B.60° | C.65° | D.70° |
如图,在直角坐标系中,⊙P的圆心P在x轴上,⊙P与x轴交于点E、F,与y轴交于点C、D,且EO=1,CD=,又B、A两点的坐标分别为(0,m)、(5,0)
(1)当m=3时,求经过A、B两点的直线解析式;
(2)当B点在y轴上运动时,若直线AB与⊙P保持相交,求m的取值范围.
已知一个圆心角为270°扇形工件,未搬动前如图所示,A、B两点触地放置,搬动时,先将扇形以B为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A、B两点再次触地时停止,半圆的直径为6m,则圆心O所经过的路线长是 m.(结果用含π的式子表示)
如图,∠A是⊙O的圆周角,∠A=50°,则∠BOC的度数为
A.40° | B.50° | C.90° | D.100° |
下列命题:①直径是圆中最长的弦; ②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④菱形的四个顶点在同一个圆上;其中正确结论的个数有( )
A.1个 | B.2个 | C.3个 | D.4个 |
如图,A.B、C、D是⊙O上的三点,∠BAC=30°,则∠BOC的大小是( )
A.60° B.45° C.30° D.15°
如图,已知正方形ABCD的边长为cm,将正方形ABCD在直线上顺时针连续翻转4次,则点A所经过的路径长为 【 】
A.4πcm | B.πcm | C.πcm | D.πcm |