如图,直线与轴、轴分别相交于两点,圆心的坐标为,圆与轴相切于点.若将圆沿轴向左移动,当圆与该直线相交时,横坐标为整数的点的个数是( )
A.2 | B.3 | C.4 | D.5 |
如图,以线段为直径的⊙交线段于点,点是弧AE的中点,交于点,°,,.
(1)求的度数;
(2)求证:BC是⊙的切线;
(3)求MD的长度.
将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为( )
A.15 B.28 C.29 D.34
有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有
A.4个 | B.3个 | C.2个 | D.1个 |
如图10-1,在平面直角坐标系中,点在轴的正半轴上, ⊙交轴于 两点,交轴于两点,且为的中点,交轴于点,若点的坐标为(-2,0),
(1)(3分)求点的坐标.
(2)(3分)连结,求证:∥
(3)(4分) 如图10-2,过点作⊙的切线,交轴于点.动点在⊙的圆周上运动时,的比值是否发生变化,若不变,求出比值;若变化,说明变化规律
如图,在平面直角坐标系中,坐标原点为,点坐标为,点坐标为,以的中点为圆心,为直径作⊙P与轴的正半轴交于点.
(1)求经过三点的抛物线对应的函数表达式.
(2)设为(1)中抛物线的顶点,求直线对应的函数表达式.
(3)试说明直线与⊙P的位置关系,并证明你的结论.
如图,在矩形ABCD中,点O在对角线AC上,以 OA长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)求证:CE是⊙O的切线;
(2)若tan∠ACB=,AE=7,求⊙O的直径.