(本题8分)如图,L1,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,
(1)根据图像分别求出L1,L2的函数关系式.
(2)当照明时间为多少时,两种灯的费用相等?
(3)假设两种灯的使用寿命都是2000h,照明效果一样.小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).
“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.
(1)填空:折线OABC表示赛跑过程中 的路程与时间的关系,线段OD表示赛跑过程中 的路程与时间的关系.赛跑的全程是 米.
(2)兔子在起初每分钟跑 米,乌龟每分钟爬 米.
(3)乌龟用了 分钟追上了正在睡觉的兔子.
(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?
在学习地理时,我们知道:“海拔越高,气温越低”,下表是海拔高度h(千米)与此高度处气温t(℃)的关系.
根据上表,回答以下问题.
(1)请写出气温t与海拔高度h的关系式;
(2)2014年3月8日,马航MH370航班失去联系,据报道称,马航MH370航班失去联系前飞行高度1066米,请计算在该海拔高度时的气温大约是多少?
(3)当气温是零下40℃时,其海拔高度是多少?
已知:如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点P在BC上运动,点P不与点B,C重合,设PC=x,若用y表示△APB的面积,求y与x的函数关系式,并求自变量x的取值范围.
因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予支援.下图是两水库的蓄水量y(万米3)与时间x(天)之间的函数图象.在单位时间内,甲 水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).
通过分析图象回答下列问题:
(1)甲水库每天的放水量是多少万立方米?
(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?
(3)求直线AD的解析式.
如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)
(1)求反比例函数的表达式
(2)根据图象直接写出当mx>时,x的取值范围;
(3)计算线段AB的长.
如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求二次函数的解析式;
(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;
(3)若直线与y轴的交点为E,连结AD、AE,求△ADE的面积.
问题1:在图1中,已知线段AB,CD,它们的中点分别为E,F.
①若,,则点坐标为_____________;
②若,,则点坐标为____________;
问题2:在图2中,无论线段处于直角坐标系中的哪个位置,当其端点坐标为,,中
点为时,请直接写出点的坐标(____________,___________);(用含、、、的式子表示).
问题3:如图3,一次函数与反比例函数的图象交于、两点,若以、、、为顶
点的四边形是平行四边形,请直接写出顶点的坐标______________.
如图,直线AB过点A,且与y轴交于点B.
(1)求直线AB的解析式;
(2)若点P是直线AB上一点,且的半径为1,请直接写出与坐标轴相切时点P的坐标.
下面的图像反映的过程是:小明从家去超市买文具,又去书店购书,然后回家.其中x表示时间,y表示小明离他家的距离,若小明家、超市、书店在同一条直线上.
根据图像回答下列问题:
(1)超市离小明家多远,小明走到超市用了多少时间?
(2)超市离书店多远,小明在书店购书用了多少时间?
(3)书店离小明家多远,小明从书店走回家的平均速度是每分钟多少米?
为丰富群众的业余生活,我市准备组织篮球比赛,市体育局策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元).方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)
方案二:直接购买门票方式如图所示.解答下列问题:
(1)方案一中,y与x的函数关系式为 ;
方案二中,当0≤x≤100时,y与x的函数关系式为 ,
当x>100时,y与x的函数关系式为 ;
(2)如果购买本场篮球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
如图,直线的解析表达式为,且与轴交于点D,直线经过点A,B,直线和交于点C.
(1)求直线的解析表达式;
(2)求△ADC的面积;
(3)直线上存在异于点C的另一点P,使△ADP与△ADC面积相等,求出点P的坐标.
某公司生产的某种商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)满足一次函数且关系如下表:
时间t(天) |
1 |
3 |
6 |
10 |
36 |
… |
日销售量m(件) |
94 |
90 |
84 |
76 |
24 |
… |
未来40天内,每天的销售价格y(元)与时间t(天)的函数关系式如下:
每天的销售价格y(元) |
当1≤t≤20时,y1=t+25 |
当20<t≤40时,y2=t+40 |
(1)求日销售量m(件)与时间t(天)的函数关系;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少;
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
已知直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x-4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x-4>kx+b的解集.
“五一”期间,甲、乙两个家庭到300 km外的风景区“自驾游”, 乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h(从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y甲(km)、y乙(km)与时间x(h)之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:
(1)由于汽车发生故障,甲家庭在途中停留了_______h;
(2)甲家庭到达风景区共花了多少时间?
(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车之间的路程不超过15 km,请通过计算说明,按图所表示的走法是否符合约定.