初中数学

如图,在平面直角坐标系内,点A的坐标为(0,12),经过原点的直线l,与经过点A的直线12相交于点B,点B的坐标为(9,3).

(1)求直线l1,l2的表达式;
(2)点C为直线l1上一动点,作CD∥y轴交直线l2于点D,若CD=8,求点C的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线l:3交x、y轴分别为A、B两点,C点与A点关于y轴对称。动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.

(1)点A坐标是     ,点B的坐标         ,BC=        
(2)当点P在什么位置时,△APQ≌△CBP,说明理由。
(3)当△PQB为等腰三角形时,求点P的坐标。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.

(1)求出图中a的值;
(2)求出甲车行驶路程y(km)与时间x(h)的函数表达式,并写出相应的x的取值范围;
(3)当甲车行驶多长时间时,两车恰好相距20km.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为(km),快车离乙地的距离为(km),慢车行驶时间为x(h),两车之间的距离为S(km),与x的函数关系图象如图(1)所示,S与x的函数关系图象如图(2)所示:

(1)图中的a=      ,b=     
(2)求S关于x的函数关系式;
(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:

(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直线经过点A(5,0),B(1,4).
(1)求直线AB的解析式;
(2)若直线与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式的解集.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:

①快递车从甲地到乙地的速度为100千米/时;
②甲、乙两地之间的距离为120千米;
③图中点B的坐标为(,75);
④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线y=x+3的图象与x轴、y轴交于A、B两点.直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1两部分.求直线l的解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数图象经过A(-2,-3),B(1,3)两点.
(1)求这个一次函数解析式.
(2)试判断点P(-1,1)是否在这个一次函数的图象上?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直线AB分别交轴、轴于点A(-2,0),B(0,2),点C是直线AB上一点,且∠ACO=30°,求AC的长及点C的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题8分)如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.

(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;
(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题10分)如图,在平面直角坐标系中,直线+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.

(1)求点A、B的坐标,并求边AB的长;
(2)求点D和点C的坐标;
(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题8分)为了发展旅游经济,我市某景区采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票金额为y1(元),节假日购票金额为y2(元).y1、y2与x之间的函数关系如图所示.

(1)观察图象可知:a=_______;b=_______;m=_______.
(2)直接写出y1、y2与x之间的函数关系式.
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A、B两个团队合计50人,A、B两个团队各有多少人?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题6分)已知点P(m,n)在第一象限,并且在一次函数y=2x-1的图像上,求实数m的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题8分)已知一次函数y=kx+b的图象经过点A(—1,—5),且与正比例函数的图象相交于点B(2,a).

(1)求a的值;
(2)求一次函数y=kx+b的表达式;
(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题