初中数学

某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量(升)与时间(分钟)之间的关系如折线图所示:

根据图象解答下列问题:
(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?
(2)已知洗衣机的排水速度为每分钟19升.
①求排水时之间的关系式;
②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

据某气象中心观察和预测:发生于地的沙尘暴一直向正南方向移动,其移动速度(km/h)与时间(h)的函数图象如图所示.过线段上一点作横轴的垂线,梯形在直线左侧部分的面积即为h内沙尘暴所经过的路程(km).

(1)当时,求的值;
(2)将s随变化的规律用数学关系式表示出来;
(3)若城位于地正南方向,且距地650km,试判断这场沙尘暴是否会侵袭到城.如果会,在沙尘暴发生后多长时间它将侵袭到城?如果不会,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

周华早起锻炼,往返于家与体育场之间,离家的距离y(米)与时间x(分)的关系如图所示.回答下列问题:

(1)填空:周华从体育场返回行走的行走速度时___________米/分;
(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y(米)与时间x(分)的关系式为y=kx+400,当周华回到家时,刘明刚好到达体育场.
①直接在图中画出刘明离周华家的距离y(米)与时间x(分)的函数图象;
②填空:周华与刘明在途中共相遇___________次;
③求周华出发后经过多少分钟与刘明最后一次相遇.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,⊙的半径为,正方形顶点坐标为,顶点在⊙上运动.
(1)当点运动到与点在同一条直线上时,试证明直线与⊙相切;
(2)当直线与⊙相切时,求所在直线对应的函数关系式;
(3)设点的横坐标为,正方形的面积为,求之间的函数关系式,并求出的最大值与最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:
信息读取:
(1)甲、乙两地之间的距离为km;
(2)请解释图中点B的实际意义;
图象理解:
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
问题解决:
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,O为坐标原点为,B(5,0),M为等腰梯形OBCD底边OB上一点,ODBC=2,∠DMC=∠DOB=60°.

(1)求直线CB的解析式;
(2)求点M的坐标;
(3)∠DMC绕点M顺时针旋转α (30°<α<60°)后,得到∠D1MC1(点D1C1依次与点DC对应),射线MD1交直线DC于点E,射线MC1交直线CB于点F ,设DE=m,BF=n .求m与 n的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某中学的高中部在校区,初中部在校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知校区的每位高中学生往返车费是6元,每人每天可栽植5棵树;校区的每位初中学生往返车费是10元,每人每天可栽植3棵树.要求初高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不得超过210元.要使本次活动植树最多,初高中各有多少学生参加?最多植树多少棵?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中△ABCABC三点坐标为A(7,1)、B(8,2)、C(9,0).

(1) 请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);
(2)求线段BC的对应线段所在直线的解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某冰箱厂为响应国家“家电下乡”号召,计划生产两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:

型号
A型
B型
成本(元/台)
2200
2600
售价(元/台)
2800
3000

(1)冰箱厂有哪几种生产方案?
(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?
(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两车同时从地出发,以各自的速度匀速向地行驶.甲车先到达地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离(千米)与乙车行驶时间(小时)之间的函数图象.
(1)请将图中的(  )内填上正确的值,并直接写出甲车从的行驶速度;
(2)求从甲车返回到与乙车相遇过程中之间的函数关系式,并写出自变量的取值范围.
(3)求出甲车返回时行驶速度及两地的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在“五一黄金周”期间,小明和他的父母坐游船从甲地到乙地观光,在售票大厅看到表(一), 爸爸对小明说:“我来考考你,你能知道里程与票价之间有何关系吗?”小明点了点头说:“里程与票价是一次函数关系,具体是……”.

在游船上,他注意到表(二),思考一下,对爸爸说:“若游船在静水中的速度不变,那么我还能算出它的速度和水流速度.”爸爸说:“你真聪明!”亲爱的同学,你知道小明是如何求出的吗?请你和小明一起求出:

(1)票价(元)与里程(千米)的函数关系式;
(2)游船在静水中的速度和水流速度.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某地区一种商品的需求量 y 1 (万件)、供应量 y 2 (万件)与价格(元/件)分别近似满足下列函数关系式: y 1 = - x + 60 y 2 = 2 x - 36 .需求量为0时,即停止供应.当 y 1 = y 2 时,该商品的价格称为稳定价格,需求量称为稳定需求量.

(1)求该商品的稳定价格与稳定需求量;
(2)价格在什么范围,该商品的需求量低于供应量?
(3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴,才能使供应量等于需求量?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,直线经过点A(,4),且与轴相交于点C.点B在轴上,O为为坐标原点,且.记的面积为S.
(1)求m的取值范围;
(2)求S关于m的函数关系式;
(3)设点B在轴的正半轴上,当S取得最大值时,将沿AC折叠得到,求点的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题