初中数学

重庆市垫江县具有2000多年的牡丹种植历史.每年3月下旬至4月上旬,主要分布在该县太平镇、澄溪镇明月山一带的牡丹迎春怒放,美不胜收.由于牡丹之根———丹皮是重要中药材,目前已种植有60多个品种2万余亩牡丹的垫江,因此成为我国丹皮出口基地,获得“丹皮之乡”的美誉。为了提高农户收入,该县决定在现有基础上开荒种植牡丹并实行政府补贴,规定每新种植一亩牡丹一次性补贴农户若干元,经调查,种植亩数(亩)与补贴数额(元)之间成一次函数关系,且补贴与种植情况如下表:

补贴数额(元)
     10
      20
    ……
种植亩数(亩)
     160
      240
……

随着补贴数额的不断增大,种植规模也不断增加,但每亩牡丹的收益(元)会相应降低,且该县补贴政策实施前每亩牡丹的收益为3000元,而每补贴10元(补贴数为10元的整数倍),每亩牡丹的收益会相应减少30元.
(1)分别求出政府补贴政策实施后,种植亩数(亩)、每亩牡丹的收益(元)与政府补贴数额(元)之间的函数关系式;
(2)要使全县新种植的牡丹总收益(元)最大,又要从政府的角度出发,政府应将每亩补贴数额定为多少元?并求出总收益的最大值和此时种植亩数;(总收益=每亩收益×亩数)
(3)在(2)问中取得最大总收益的情况下,为了发展旅游业,需占用其中不超过50亩的新种牡丹园,利用其树间空地种植刚由国际牡丹园培育出的“黑桃皇后”.已知引进该新品种平均每亩的费用为530元,此外还要购置其它设备,这项费用(元)等于种植面积(亩)的平方的25倍.这样混种了“黑桃皇后”的这部分土地比原来种植单一品种牡丹时每亩的平均收益增加了2000元,这部分混种土地在扣除所有费用后总收益为85000元.求混种牡丹的土地有多少亩?(结果精确到个位)(参考数据:)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知一次函数

①在给定的直角坐标系中作出它的图象;
②此函数图象与x轴、y轴的交点A、B坐标分别为______;______。
③函数图象与坐标轴围成的三角形的周长是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为,宽为,分别回答下列问题:

(1)为了保证能折成图④的形状(即纸条两端均超出点),试求的取值范围.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点与点的距离(用表示)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

康乐公司在两地分别有同型号的机器台和台,现要运往甲地台,乙地台,从两地运往甲、乙两地的费用如下表:

 
甲地(元/台)
乙地(元/台)






(1)如果从地运往甲地台,求完成以上调运所需总费用(元)与(台)之间的函数关系式;
(2)请你为康乐公司设计一种最佳调运方案,使总费用最少,并说明理由

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一次函数y=kx+b图象经过点(1,3)和(4,6)

①试求
画出这个一次函数图象;
③这个一次函数与y轴交点坐标是(   )
④当x    时,y=0; 
⑤当x    时,y﹥0;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为(时),分别与之间的部分函数图象如图9所示.

(1)当0≤x≤6时,分别求之间的函数关系式;
(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过棵.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数y="(k+1)x" + k-1.
(1)若函数的图象经过原点,求k的值;
(2)若函数的图象经过第一、三、四象限,求k的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知一次函数的图像经过点(-2,5),并且与直线=3-4相交于轴上,求此函数的解析式

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,直线与双曲线相交于A(2,1)、B两点.

(1)求m及k的值;
(2)不解关于x、y的方程组直接写出点B的坐标;
(3)直线经过点B吗?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.
(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;
(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式.
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图12-1,已知直线y= -x+4交x轴于点A,交y轴于点B.

(1)写出A、B两点的坐标分别是:                                
(2)设点P是射线y = x()上一点,点P的横坐标为t,M是OP的中点(O是原点),以PM为对角线作正方形PDME.正方形PDME与△OAB公共部分的面积为S,求S与t之间的函数关系式,并求S的最大值.(图12-2、12-3供你探索问题时使用)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题