初中数学

一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示之间的函数关系.
根据图象进行以下探究

(1)请解释图中点的实际意义;
(2)求慢车和快车的速度;
(3)求线段BC所表示的之间的函数关系式,并写出自变量的取值范围;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

解答题:声音在空气中传播的速度(m/s)是气温(℃)的一次函数,下表列出了一组不同气温的音速:

气温(℃)
0
5
10
15
20
音速(m/s)
331
334
337
340
343

(1)求之间的函数关系式;(2)气温℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在方格纸中(小正方形的边长为1),反比例函数与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:
(1)①分别写出点A、B的坐标;
②把直线AB向右平移5个单位,再向上平移5个单位,求出平移后直线A′B′的解析式;
(2)若点C在函数的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.

求函数y=x+3的坐标三角形的三条边长;
若函数y=x+b(b为常数)的坐标三角形周长为16, 
求此三角形面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(8分)如图,一直线BC与已知直线AB:关于y轴对称。

(1)求直线BC的解析式;
(2)说明两直线与x轴围成的三角形是等腰三角形。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分12分)某商场购进一批单价为16元日用品,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数Y(件)是价格X(元/件)的一次函数
(1)试求Y 与X之间的关系式。
(2)在商品积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.

(1)求点A的坐标及一次函数解析式.
(2)求点C的坐标及反比例函数的解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b.当x=1时,y=1;当x=2时,y=﹣1.求这个函数的表达式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,函数的图象与函数)的图象交于A(,1)B(1,)两点.

(1)求函数的表达式;    
(2)观察图象,比较当时,的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.

(1)点A坐标是      ,点B的坐标      ,BC=     
(2)当点P在什么位置时,△APQ≌△CBP,说明理由.
(3)当△PQB为等腰三角形时,求点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知一次函数的图象与反比例函数的图象交于两点,且点的横坐标和点的纵坐标都是

求:(1)一次函数解析式;
(2)求的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.

(1)图中线段AB所表示的实际意义是     
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题12分)如图,直线分别交轴于,点是该直线与反比例函数在第一象限内的一个交点,轴于,且.

(1)求点的坐标;
(2)设点与点在同一个反比例函数的图象上,且点在直线的右侧,作轴于,当相似时,求点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,反比例函数与一次函数y=x+b的图象,都经过点A(1,2)

(1)试确定反比例函数和一次函数的解析式;
(2)求一次函数图象与两坐标轴的交点坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数y=(2m–2)x+m+1
(1)m为何值时,图象过原点.         
(2)已知y随x增大而增大,函数图象与y轴交点在x轴上方,求m取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题