初中数学

某超市销售一种新鲜“酸奶”, 此“酸奶”以每瓶3元购进,5元售出.这种“酸奶”的保质期不超过一天,对当天未售出的“酸奶”必须全部做销毁处理.
(1)该超市某一天购进20瓶酸奶进行销售.若设售出酸奶的瓶数为x(瓶),销售酸奶的利润为y(元),写出这一天销售酸奶的利润y(元)与售出的瓶数x(瓶)之间的函数关系式.为确保超市在销售这20瓶酸奶时不亏本,当天至少应售出多少瓶?
(2)小明在社会调查活动中,了解到近10天当中,该超市每天购进酸奶20瓶的销售情况统计如下:

每天售出瓶数
17
18
19
20
频数
1
2
2
5

根据上表,求该超市这10天每天销售酸奶的利润的平均数;
(3)小明根据(2)中,10天酸奶的销售情况统计,计算得出在近10天当中,其实每天购进19瓶总获利要比每天购进20瓶总获利还多.你认为小明的说法有道理吗?试通过计算说明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y(千米)、y(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:

(1)由于汽车发生故障,甲组在途中停留了   小时;
(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?
(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,直线y=kx+3经过点(-1,1),求不等式kx+3<0的解集.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.

水银柱的长度x(cm)
4.2

8.2
9.8
体温计的读数y(℃)
35.0

40.0
42.0

 
(1)求y关于x的函数关系式;
(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

我省某工艺厂为全运会设计了一款工艺品的成本是20元∕件.投放市场进行试销后发现每天的销售量(件)是售价(元∕件)的一次函数,当售价为22元∕件时,每天销售量为380件;当售价为25元∕件时,每天的销售量为350件.
的函数关系式
该工艺品售价定为每件多少元时,每天获得的利润最大?最大利润是多少元?(利润=销售收入-成本)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

小丽驾车从甲地到乙地。设她出发第x min时的速度为y km/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系。

(1)小丽驾车的最高速度是        km/h;
(2)当20£x£30时,求y与x之间的函数关系式,并求出小丽出发第22 min时的速度;
(3)如果汽车每行驶100 km耗油10 L,那么小丽驾车从甲地到乙地共耗油多少升?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.

(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C      、D      
②⊙D的半径=     (结果保留根号);
③∠ADC的度数为   
④网格图中是否存在过点B的直线BE是⊙D的切线,如果没有,请说明理由;如果有,请直接写出直线BE的函数解析式。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b.当x=1时,y=1;当x=2时,y=﹣1.求这个函数的表达式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,函数的图象与函数)的图象交于A(,1)B(1,)两点.

(1)求函数的表达式;    
(2)观察图象,比较当时,的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.

(1)点A坐标是      ,点B的坐标      ,BC=     
(2)当点P在什么位置时,△APQ≌△CBP,说明理由.
(3)当△PQB为等腰三角形时,求点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知一次函数的图象与反比例函数的图象交于两点,且点的横坐标和点的纵坐标都是

求:(1)一次函数解析式;
(2)求的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.

(1)图中线段AB所表示的实际意义是     
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题12分)如图,直线分别交轴于,点是该直线与反比例函数在第一象限内的一个交点,轴于,且.

(1)求点的坐标;
(2)设点与点在同一个反比例函数的图象上,且点在直线的右侧,作轴于,当相似时,求点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,反比例函数与一次函数y=x+b的图象,都经过点A(1,2)

(1)试确定反比例函数和一次函数的解析式;
(2)求一次函数图象与两坐标轴的交点坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数y=(2m–2)x+m+1
(1)m为何值时,图象过原点.         
(2)已知y随x增大而增大,函数图象与y轴交点在x轴上方,求m取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题