已知,二次函数的图象如图所示.
(1)若二次函数的对称轴方程为,求二次函数的解析式;
(2)已知一次函数,点是x轴上的一个动点.若在(1)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数的图象于点N.若只有当1<m<时,点M位于点N的上方,求这个一次函数的解析式;
(3)若一元二次方程有实数根,请你构造恰当的函数,根据图象直接写出的最大值.
某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)写出这一函数的表达式.
(2)当气体体积为1 m3时,气压是多少?
(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
小亮步行去郊游,图中的折线表示他离家的距离y米与所用的时间x分的关系,请你根据这个折线图回答下列问题:
(1)小亮离家最远的距离是 米,他途中休息了 分钟;
(2)当50≤x≤80时,求y与x的函数关系式。
图中折线是某个函数的图象,根据图象解答下列问题.
(1)写出自变量x的取值范围:____________,函数值y的取值范围:_____________.
(2)自变量x=1.5时,求函数值.
在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y(米)与施工时间x(时)之间关系的部分图象.请解答下列问题:
(1)求乙队在2≤x≤6的时段内,y与x之间的函数关系式;
(2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到完工所铺设的彩色道砖的长度为多少米?
“节能环保,低碳生活”是我们倡导的一种
生活方式。某家电商场计划用万元购进节能型电视机、洗衣机和空调共40台。三种家电的进价及售价如右表所示:
|
进价(元/台) |
售价(元/台) |
电视机 |
5000 |
5500 |
洗衣机 |
2000 |
2160 |
空 调 |
2400 |
2700 |
(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍,请问商场有哪几种进货方案?
(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金购满1000元送50元家电消费券一张、多买多送”的活动,在(1)的条件下,若三种电器在活动期间全部售出,商家预计最多送出消费券多少张?
判断A(1,3)、B(﹣2,0)、C(﹣4,﹣2)三点是否在同一直线上,并说明理由.
如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.
(1)点A坐标是 ,点B的坐标 ,BC= .
(2)当点P在什么位置时,△APQ≌△CBP,说明理由.
(3)当△PQB为等腰三角形时,求点P的坐标.
如图,已知一次函数的图象与反比例函数的图象交于,两点,且点的横坐标和点的纵坐标都是.
求:(1)一次函数解析式;
(2)求的面积.
开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.
(1)图中线段AB所表示的实际意义是 ;
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?
(本小题12分)如图,直线分别交轴于、,点是该直线与反比例函数在第一象限内的一个交点,轴于,且.
(1)求点的坐标;
(2)设点与点在同一个反比例函数的图象上,且点在直线的右侧,作轴于,当与相似时,求点的坐标.
如图,反比例函数与一次函数y=x+b的图象,都经过点A(1,2)
(1)试确定反比例函数和一次函数的解析式;
(2)求一次函数图象与两坐标轴的交点坐标.