已知一次函数的图象经过点A(-2,-3)及点B(1,6).
(1).求此一次函数的解析式.
(2).判断点C(,2)是否在函数的图象上.
“教师节”快要到了,张爷爷欲用120元钱,为“光明”幼儿园购买价格分别为8元、6元和5元的图书20册.
(1)若设8元的图书购买册,6元的图书购买册,求与之间的函数关系式.
(2)若每册图书至少购买2册,求张爷爷有几种购买方案?并写出取最大值和取最小值时的购买方案.
运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
如图1,在等腰三角形ABC中,AB=AC,AC边上的高为,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为、.连接AM,可得结论+=.当点M在BC延长线上时,、、之间的等量关系式是 .(直接写出结论不必证明).
应用:平面直角坐标系中有两条直线:、:,若上的一点M到的距离是1.请运用(1)的条件和结论求出点M的坐标.
张老师于2010年9月份在杭州买了一套楼房,当时(即9月份)在建行贷款96万元,贷款期限为20年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%(每月还款数额=平均每月应还的贷款本金+月利息,月利息=上月所剩贷款本金数额×月利率).
求张老师借款后第一个月的还款数额.
假设贷款月利率不变,请写出张老师借款后第n(n是正整数)个月还款数额p与n之间的函数关系式(不必化简).
在(2)的条件下,求张老师2011年10份的还款数额.
萧山素以“萝卜干之乡”著称.某乡组织20辆汽车装运A、B、C三种不同包装的萝卜干42吨到外地销售.按规定每辆车只装同一种萝卜干,且必须装满,每种萝卜干不少于2车.
设有x辆车装运A种萝卜干,用y辆车装运B种萝卜干,根据下表提供的信息,求y与x之间的函数关系,并求x的取值范围;
设此次外销活动的利润为W(百元),求W与x的函数关系式以及最大利润,并安排相应的车辆分配方案.
某文印店,一次性复印收费(元)与复印面数(8开纸)(面)的函数关系如图2—8所示:
从图象中可看出:复印超过50面的部分每面收费 元,复印200面平均每面收费 元;
两同学各需要复印都不多于50面的资料,他们合起来去该店复印,结果比各自独去复印两人共节省2元钱,问其中一位同学所需复印的面数不能少于多少面?
“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿
相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象.
(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);(2)写出客车和出租车行驶的速度分别是多少?
(3)试求出出租车出发后多长时间赶上客车?
图中折线ABC表示从甲地向乙地打长途电话时所需付的电话费y(元)与通话时间t
(分钟)之间的关系图像.
(1)从图像知,通话2分钟需付的电话费是 元.
(2)当t≥3时求出该图像的解析式(写出求解过程).
(3)通话7分钟需付的电话费是多少元?
已知一次函数物图象经过A(-2,-3),B(1,3)两点.
⑴ 求这个一次函数的解析式.
⑵ 试判断点P(-1,1)是否在这个一次函数的图象上.
⑶ 求此函数与x轴、y轴围成的三角形的面积.
解答题:声音在空气中传播的速度(m/s)是气温(℃)的一次函数,下表列出了一组不同气温的音速:
气温(℃) |
0 |
5 |
10 |
15 |
20 |
音速(m/s) |
331 |
334 |
337 |
340 |
343 |
(1)求与之间的函数关系式;(2)气温℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?
某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段、分别表示父、子俩送票、取票过程中,离体育馆的路程(米)与所用时间(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
求点的坐标和所在直线的函数关系式
小明能否在比赛开始前到达体育馆
在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
求函数y=x+3的坐标三角形的三条边长;
若函数y=x+b(b为常数)的坐标三角形周长为16,
求此三角形面积.
已知反比例函数的图象与一次函数的图象交于点(,2),点(-2, ),一次函数图象与轴的交点为.
求一次函数解析式;
求点的坐标;
求△的面积.
(本题满分12分)某商场购进一批单价为16元日用品,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数Y(件)是价格X(元/件)的一次函数
(1)试求Y 与X之间的关系式。
(2)在商品积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本)
如图是某城市出租车单程收费Y(元)与行驶路程X(千米)之间的函数关系图像,根据图像回答下列问题:
(1)从图像上你能得到哪些信息?(请写出2条)
(2)求出收费Y(元)与行驶路程X(千米)(X≥3)之间的函数关系式。