某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段、分别表示父、子俩送票、取票过程中,离体育馆的路程(米)与所用时间(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):求点的坐标和所在直线的函数关系式小明能否在比赛开始前到达体育馆
问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空: 四边形DBFE的面积▲, △EFC的面积S1=▲, △ADE的面积S2=▲. 探究发现(2)在(1)中,若,,DE与BC间的距离为.请证明S2=4S1 S2. 拓展迁移(3)如图2,平行四边形DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.
如图,已知正比例函数和反比例函数的图像都经过点M(-2,), 且P(,-2)为双曲线上的一点.(1)求出正比例函数和反比例函数的关系式;(2)观察图象,写出正比例函数值大于反比例函数值时自变量的取值范围;(3)若点Q在第一象限中的双曲线上运动,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.
某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成下两幅统计图(如图),请你结合图中所给信息解答下列问题:(说明:A级:90分—100分;B级:75分—89分;C级:60分—74分;D级:60分以下)(1)D级学生的人数占全班人数的百分比为▲;(2)扇形统计图中C级所在扇形圆心角度数为▲;(3)该班学生体育测试成绩的中位数落在等级▲内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地全年收获A、B两种生姜的年总产量为68000千克,求A、B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?