初中数学

在平面直角坐标系中,已知抛物线(a,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(﹣4,3),直角顶点B在第二象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;

(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q,判断线段PQ的长度是否为定值?如果是,求出PQ的长;如果不是,说明理由;
(3)在(2)的条件下,若点M在直线AC下方,且为平移前(1)中的抛物线上的点,以M、P、Q三点为顶点的三角形是等腰直角三角形,求出所有符合条件的点M的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

复习课中,教师给出关于x的函数(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:
①存在函数,其图像经过(1,0)点;
②函数图像与坐标轴总有三个不同的交点;
③当时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;
教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,抛物线y=x²+bx+c与直线y=x-1交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-x+3的图象与y轴、x轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.

(1)试求b,c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:
①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0,且a,b,c为常数)的对称轴为:直线x=,与x轴分别交于点A、点B,与y轴交于点C(0,),且过点(3,-5),D为x轴正半轴上的动点,E为y轴负半轴上的动点.

(1)求该抛物线的表达式;
(2)如图1,当点D为(3,0)时,DE交该抛物线于点M,若∠ADC=∠CDM,求点M的坐标;
(3)如图2,把(1)中抛物线平移使其顶点与原点重合,若直线ED与新抛物线仅有唯一交点Q时,y轴上是否存在一个定点P使PE=PQ?若存在,求出点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,抛物线与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线于点C;
(1)求该抛物线的解析式;
(2)求点A关于直线的对称点的坐标,判定点是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.
(1)求证:△APQ∽△CDQ;
(2)P点从A点出发沿AB边以每秒1个单位的速度向B点移动,移动时间为t秒.
①当t为何值时,DP⊥AC?
②设,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.
(1)当售价定为30元时,一个月可获利多少元?
(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?                         

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:二次函数轴交于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程的两个根.

(1)请直接写出点A、B的坐标,并求出该二次函数的解析式。
(2)如图1,在二次函数对称轴上是否存在点P,使的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(3)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合).过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当面积S最大时,求m的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。

(1)点A、B、C的坐标分别为                     
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,若存在,请求出点P的坐标;若不存在,请说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(14分)已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.

(1) 求抛物线的解析式;
(2) 以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
(3) 设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
如图所示,抛物线经过原点,与轴交于另一点,直线与两坐标轴分别交于两点,与抛物线交于两点.

(1)求直线与抛物线的解析式;
(2)若抛物线在轴上方的部分有一动点
的面积最大值;
(3)若动点保持(2)中的运动路线,问是否存在点
,使得的面积等于面积的?若存在,请求出点的坐标;
若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分7分)如图,已知二次函数的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.

(1)求一次函数解析式;
(2)求顶点P的坐标;
(3)平移直线AB使其过点P,如果点M在平移后的直线上,且,求点M坐标;
(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)已知直线y=x+4与x轴,y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发
沿CBA向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q
的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的
函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点
N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存
在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题