初中数学

如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数上,且与x轴交于AB两点.
(1)若二次函数的对称轴为,试求a,c的值;
(2)在(1)的条件下求AB的长;
(3)若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图:抛物线与x 轴交于A、B两点,点A的坐标是(1,0),与y轴交于点C。
⑴求抛物线的对称轴和点B的坐标;
⑵过点C作CP⊥对称轴于点P,连结BC交对称轴于点D,连结AC、BP,且 ,求抛物线的解析式;
⑶在⑵的条件下,设抛物线的顶点为G,连结BG、CG、求BCG的面积。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = x 2 + b x + c 的图象的对称轴为直线 x = 1 ,且与 x 轴有两个不同的交点,其中一个交点坐标为 ( - 1 , 0 )
(1)求二次函数的关系式;
(2)在抛物线上有一点 A ,其横坐标为-2,直线 l 过点 A 并绕着点 A 旋转,与抛物线的另一个交点是点 B ,点 B 的横坐标满足 2 x B 3 2 ,当 A O B 的面积最大时,求出此时直线 l 的关系式;
(3)抛物线上是否存在点 C 使 A O C 的面积与(2)中 A O B 的最大面积相等.若存在,求出点 C 的横坐标;若不存在说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求△OAB的面积;
(2)若抛物线y=﹣x2﹣2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,二次函数的图象经过△AOB的三个顶点,其中A(﹣1,m),B(n,n)
(1)求A、B的坐标;
(2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.
①这样的点C有几个?
②能否将抛物线平移后经过A、C两点,若能,求出平移后经过A、C两点的一条抛物线的解析式;若不能,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知一元二次方程x2-4x+3=0的两根是m,n且m<n.如图12,若抛物线y=-x2+bx
+c的图像经过点A(m,0)、B(0,n).
(1)求抛物线的解析式.
(2)若(1)中的抛物线与x轴的另一个交点为C.根据图像回答,当x取何值时,抛物线的图像在直线BC的上方?
(3)点P在线段OC上,作PE⊥x轴与抛物线交与点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在等腰△ABC中,AB=AC=5,BC=6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.
(1)当MN为何值时,点P恰好落在BC上?
(2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式.当x为何值时,y的值最大,最大值是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线过点A(0,6),B(2,0),C(7,).
(1)求抛物线的解析式;
(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似,若有请求出所有和条件的点P的坐标,若没有,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限.
(1)求该抛物线所对应的函数关系式;
(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B.DE⊥x轴于点C.
①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长;
②求矩形ABCD的周长的最大值,并写出此时点A的坐标;
③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·曲靖)一名男生推铅球,铅球行进高度y(单位:m)与水平距离x


(1)求铅球推出的水平距离;
(2)通过计算说明铅球行进高度能否达到4m。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·兵团维吾尔)已知抛物线y=-x2+4x-3与x轴交于A、B两点(A
点在B点左侧),顶点为P.
(1)求A、B、P三点的坐标;
(2)在直角坐标系中,用列表描点法作出抛物线的图象,并根据图象写出x取何值时,函
数值大于零;
(3)将此抛物线的图象向下平移一个单位,请写出平称后图象的函数表达式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(满分14分)如图(1),矩形ABCD的一边BC在直接 坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为( ),其中 .
(1)求点E、F的坐标(用含的式子表示);
(2)连接OA,若△OAF是等腰三角形,求 的值;
(3)如图(2),设抛物线 经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求 的值.

来源:2011年初中毕业升学考试(湖北孝感卷)数学
  • 更新:2021-12-07
  • 题型:未知
  • 难度:未知

如图,已知二次函数 的图象经过
A( ),B(0,7)两点.
⑴ 求该抛物线的解析式及对称轴;
⑵ 当 为何值时,
⑶ 在 轴上方作平行于 轴的直线 ,与抛物线交于C,D两点(点C在对称轴的左侧),
过点C,D作 轴的垂线,垂足分别为F,E.当矩形CDEF为 正方形时,求C点的坐标.

来源:2011年初中毕业升学考试(湖南永州卷)数学
  • 更新:2021-12-07
  • 题型:未知
  • 难度:未知

如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·十堰)12分)如图,已知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,-3)。
(1)求抛物线的解析式;
(2)如图(1),已知点H(0,-1).问在抛物线上是否存在点G(点G在y轴的左侧),使得SGHC=SGHA?若存在,求出点G的坐标,若不存在,请说明理由;
(3)如图(2),抛物线上点D在x轴上的正投影为点E(-2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题