初中数学

如图(1),在平面直角坐标系xOy中,抛物线与x轴交于,与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.
(1)抛物线的解析式是       
(2)如图(2),点P是AD上的一个动点,是P关于DE的对称点,连结PE,过F∥PE交x轴于F. 设,求y关于x的函数关系式,并求y的最大值;
(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线经过A(-3,0)、B(4,0)两点,且与y轴交于点C,D(,0).动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时动点Q从点C出发,沿线段CA以某一速度向点A移动.

(1)求该抛物线的解析式;
(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;
(3)在第一象限的抛物线上取一点G,使得S△GCB=S△GCA,再在抛物线上找点E(不与点A、B、C重合),使得∠GBE=45°,求E点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD沿PD翻折得到△A′PD,以A′P和PB为邻边作▱A′PBE,A′E交射线BC于点F,交射线PQ于点G.设▱A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P的运动时间为ts.
(1)当t为何值时,点A′与点C重合;
(2)用含t的代数式表示QF的长;
(3)求S与t的函数关系式;
(4)请直接写出当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时t的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C.

(1)求此抛物线的解析式;
(2)如图1,点E是线段OB上一动点,过点E作DE⊥x轴,交抛物线于点D,若直线CD与以OE为直径的⊙M相切,试求出点E的坐标;
(3)如图2,在抛物线上是否存在一点P,过点P作x轴的垂线,垂足为F,过点F作FG∥BC,交线段AC于点G,连接FC,使△BCF∽△CFG?若存在,求出点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.

(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系xOy中,点M为抛物线的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.
(1)求抛物线的函数关系式,并写出点P的坐标;
(2)小丽发现:将抛物线绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;
(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),
①写出C点的坐标:C(              )(坐标用含有t的代数式表示);
②若点C在题(2)中旋转后的新抛物线上,求t的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线)与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,点A的坐标为(4,0),抛物线的对称轴是直线

(1)求抛物线的解析式;
(2)M为第一象限内的抛物线上的一个点,过点M作MG⊥x轴于点G,交AC于点H,当线段CM=CH时,求点M的坐标;
(3)在(2)的条件下,将线段MG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段MG与抛物线交于点N,在线段GA上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.
(1)用含m的代数式表示a;
(2))求证:为定值;
(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为了迎接无锡市排球运动会,市排协准备新购一批排球.
(1)张会长问小李:“我们现在还有多少个排球?”,小李说:“两年前我们购进100个新排球,由于训练损坏,现在还有81个球.”,假设这两年平均每年的损坏率相同,求损坏率.
(2)张会长说:“我们协会现有训练队是奇数个,如果新购进的排球,每队分8个球,新球正好都分完;如果每队分9个球,那么有一个队分得的新球就不足6个,但超过2个.”请问市排协准备新购排球多少个?该协会有多少个训练队?
(3)张会长要求小李去买这批新排球,小李看到某体育用品商店提供如下信息:
信息一:可供选择的排球有A、B、C三种型号,但要求购买A、B型号数量相等.
信息二:如表:

型号
每个型号批发单价(元)
每年每个型号排球的损坏率
A
30
0.2
B
20
0.3
C
50
0.1

 
设购买A、C型号排球分别为a个、b个,请你能帮助小李制定一个购买方案.要求购买总费用w(元)最少,而且要使这批排球两年后没有损坏的个数不少于27个.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

抛物线y=+x+m的顶点在直线y=x+3上,过点F(-2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.

(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;
(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;
(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,抛物线y=-x2-2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线y=(x+2)(x﹣4)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)设动点N(﹣2,n),求使MN+BN的值最小时n的值;
(3)P是抛物线上一点,请你探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD相似(△PAB与△ABD不重合)?若存在,求出点P的坐标;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分9分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0),B(-5,0)两点,直线y=x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.

(1)求抛物线的解析式;
(2)若PE=5EF,求m的值;
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=-x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.

(1)求抛物线的解析式.
(2)当DE=4时,求四边形CAEB的面积.
(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,直接写出点D坐标;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值试题