二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点( )
A.(-1,-1) | B.(1,-1) | C.(-1,1) | D.(1,1) |
已知两点(-2,y1)(3,y2)均在抛物线y=ax2+bx+c上,点C(x0,y0)是该抛物线的顶点,若y1<y2≤y0,则x0的取值范围是( )
A.x0>3 | B.x0> | C.-2<x0<3 | D.-1<x0< |
已知二次函数中,函数与自变量的部分对应值如下表:
… |
-1 |
0 |
1 |
2 |
3 |
4 |
… |
|
… |
-8 |
-3 |
0 |
1 |
0 |
-3 |
… |
(1)求该二次函数的关系式;
(2)当为何值时,有最大值,最大值是多少?
(3)若,两点都在该函数的图象上,试比较与的大小.
(1)已知二次函数的图像经过点(-2,8)和(-1,5),求这个函数的表达式;
(2)已知抛物线的顶点为(-1,-3),与轴交点为(0,-5),求抛物线的解析式.
设函数(k是常数).
(1)当k=1和k=2时的函数和的图像如图所示,请你在同一坐标系中画出k=3时函数的图像;
(2)根据图像,写出你发现的两条结论;
(3)将函数的图像向左平移2个单位,再向下平移4个单位,得到函数的图像。请写出函数的解析式,回答自变量x取何值时,函数的最小值是多少?
如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,P是此图象上的一动点.设P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣(0≤x≤5),给出以下四个结论:
①AF=2;②BF=5;③OA=5;④OB=4
其中正确结论的序号是 .
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).
(1)求该抛物线的解析式及顶点M坐标;
(2)求△BCM面积与△ABC面积的比;
(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.
如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E、F分别是线段CD,AB上的动点.设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是( )
A. | B. | C. | D. |
在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的函数表达式.
(2)足球第一次落地点距守门员多少米?(取)
(3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取)
已知下列函数:
①y=x2;
②y=-x2;
③y=2x2;
④y=(x-1)2+2.
其中通过平移、旋转、轴对称变换得到函数y=x2+2x-3的图象的有 (填写所有正确选项的序号).
如图,直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
将抛物线的图象向右平移3个单位,再向上平移4个单位后,得到的新抛物线解析式是 .