如图,二次函数的图像经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( )
A.y的最大值小于0 |
B.当x=0时,y的值大于1 |
C.当x=-1时,y的值大于1 |
D.当x=-3时,y的值小于0 |
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:
①abc<0;②2a-b=0;③4a+2b+c<0,④a+b+c=0.其中说法正确的是( )
A.①② | B.①②③ | C.①②④ | D.②③④ |
抛物线y=3x2向左平移1个单位,再向上平移2个单位,所得到的抛物线是( )
A.y=3(x﹣1)2﹣2 |
B.y=3(x+1)2﹣2 |
C.y=3(x+1)2+2 |
D.y=3(x﹣1)2+2 |
某饰品店以20元/件的价格采购了一批今年新上市的饰品进行了为期30天的销售,销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30);又知前20天的销售价格Q1(元/件)与销售时间x(天)之间有如下关系:Q1=x+30(1≤x≤20),后10天的销售价格Q2则稳定在45元/件.
(1)试分别写出该商店前20天的日销售利润R1(元)和后10天的日销售利润R2(元)与销售时间x(天)之间的函数关系式;
(2)请问在这30天的销售期中,哪一天的日销售利润最大?并求出这个最大利润值.
(注:销售利润=销售收入-购进成本)
把抛物线y=x2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( )
A.y=(x-1)2+2 | B.y=(x+1)2-2 | C.y= (x-1)2-2 | D.y=(x+1)2+2 |
如图,二次函数y=ax2+bx+c的图象经过(-1,0)(0,3),下列结论中错误的是( )
A.abc<0 | B.9a+3b+c=0 | C.a-b=-3 | D.4ac﹣b2<0 |
已知二次函数(是常数).
(1)求证:不论为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?
如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,P是此图象上的一动点.设P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣(0≤x≤5),给出以下四个结论:
①AF=2;②BF=5;③OA=5;④OB=4
其中正确结论的序号是 .
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).
(1)求该抛物线的解析式及顶点M坐标;
(2)求△BCM面积与△ABC面积的比;
(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.
如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E、F分别是线段CD,AB上的动点.设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是( )
A. | B. | C. | D. |
在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的函数表达式.
(2)足球第一次落地点距守门员多少米?(取)
(3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取)
已知下列函数:
①y=x2;
②y=-x2;
③y=2x2;
④y=(x-1)2+2.
其中通过平移、旋转、轴对称变换得到函数y=x2+2x-3的图象的有 (填写所有正确选项的序号).
如图,直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.