初中数学

已知二次函数是常数).
(1)求证:不论为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将二次函数y=3(x+2)2-4的图象向右平移3个单位,再向上平移1个单位,所得的图象的函数关系式为               

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为(   )

A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( )

A.y的最大值小于0
B.当x=0时,y的值大于1
C.当x=-1时,y的值大于1
D.当x=-3时,y的值小于0
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为A(﹣1,0),另一交点为B,与y轴的交点坐标为C(0,3).

(1)求出b,c的值,并写出此二次函数的解析式;
(2)求出顶点D的坐标以及SBCD面积;
(3)根据图象,写出函数值y为正数时,自变量x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)抛物线m1:y1=a1x2+b1x+c1中,函数y1与自变量x之间的部分对应值如表:

设抛物线m1的顶点为P,与y轴的交点为C,则点P的坐标为        ,点C的坐标为     
(2)将设抛物线m1沿x轴翻折,得到抛物线m2:y2=a2x2+b2x+c2,则当x=-3时,y2=        
(3)在(1)的条件下,将抛物线m1沿水平方向平移,得到抛物线m3.设抛物线m1与x轴交于A,B两点(点A在点B的左侧),抛物线m3与x轴交于M,N两点(点M在点N的左侧).过点C作平行于x轴的直线,交抛物线m3于点K.问:是否存在以A,C,K,M为顶点的四边形是菱形的情形?若存在,请求出点K的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知抛物线
(1)填空:抛物线的顶点坐标是(       ),对称轴是          
(2)已知y轴上一点A(0,-2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点 N,使以点O、点A、点M、点N为顶点的四边形为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由. 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

请写出一个开口向上,并且与y轴交于点(0,-1)的抛物线的表达式是     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在相距2米的两棵树间拴一根绳子做一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小芳距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为        米.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,P是此图象上的一动点.设P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣(0≤x≤5),给出以下四个结论:
①AF=2;②BF=5;③OA=5;④OB=4
其中正确结论的序号是     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).

(1)求该抛物线的解析式及顶点M坐标;
(2)求△BCM面积与△ABC面积的比;
(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E、F分别是线段CD,AB上的动点.设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.

(1)求足球开始飞出到第一次落地时,该抛物线的函数表达式.
(2)足球第一次落地点距守门员多少米?(取
(3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知下列函数:
①y=x2
②y=-x2
③y=2x2
④y=(x-1)2+2.
其中通过平移、旋转、轴对称变换得到函数y=x2+2x-3的图象的有            (填写所有正确选项的序号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;
(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值试题