已知抛物线的顶点坐标为(-2,-3),且经过点(-3,-2),求这个抛物线的解析式。
抛物线y=﹣x2+bx+c的部分图象如图所示,要使y>0,则x的取值范围是( )
A.﹣4<x<1 | B.﹣3<x<1 | C.x<﹣4或x>1 | D.x<﹣3或x>1 |
二次函数y=ax2+bx+c的图像如图所示,则①abc;②b2-4ac;③2a+b;④a+b+c这四个式子中,值为负数的有个
A.1个 | B.2个 | C.3个 | D.4个 |
已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点.
(1)请写出b、c的关系式;
(2)设直线y=7与该抛物线的交点为A、B,求AB的长;
(3)若P(a,﹣a)不在抛物线y=x2﹣2bx+c上,请求出b的取值范围.
如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F,设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是( )
若二次函数的与的部分对应值如下表:
-7 |
-6 |
-5 |
-4 |
-3 |
-2 |
|
y |
-27 |
-13 |
-3 |
3 |
5 |
3 |
则当时,的值为( )
A.5 B.-3 C.-13 D.-27
如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,P是此图象上的一动点.设P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣(0≤x≤5),给出以下四个结论:
①AF=2;②BF=5;③OA=5;④OB=4
其中正确结论的序号是 .
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).
(1)求该抛物线的解析式及顶点M坐标;
(2)求△BCM面积与△ABC面积的比;
(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.
如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E、F分别是线段CD,AB上的动点.设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是( )
A. | B. | C. | D. |
在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的函数表达式.
(2)足球第一次落地点距守门员多少米?(取)
(3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取)