某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元.
(1)第二周单价降低x元后,这周销售的销量为 (用x的关系式表示).
(2)求这批旅游纪念品第二周的销售价格.
某百货大搂服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.
(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
(2)用配方法说明:要想盈利最多,每件童装应降价多少元?
随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆.
(1)若该小区2009年底到2012年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2012年底电动自行车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.
现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递总件数的月平均增长率;
(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
已知关于的一元二次方程x2-4x+k+1=0
(1)若=-1是方程的一个根,求k值和方程的另一根;
(2)设x1,x2是关于x的方程x2-4x+k+1=0的两个实数根,是否存在实数k,使得x1x2>x1+x2成立?请说明理由.
佳佳超市经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现佳佳超市要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
解方程
(1)x2-10x=96
(2)阅读下面的例题:
解方程x2-|x|-2=0.
解:分两种情况讨论:
①当x≥0时,原方程化为x2-x-2=0.
解得:x1=2,x2=-1(不合题意,舍去);
②当x<0时,原方程化为x2+x-2=0.
解得:x1=-2,x2=1(不合题意,舍去);
综上所述,原方程的根是x1=2,x2=-2.
请参照前面的例题的解法解方程:x2-|x-1|-1=0
解方程:
(1)x(x-2)=x-2;
(2)(x+8)(x+1)=-12.
某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元.
(1)若该商店两次调价的降价率相同,求这个降价率;
(2)经调查,该商品每降价0.2元,即可多销售10件.若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?
对x,y定义一种新运算T,规定:(其中、均为非零常数),这里等式右边是通常的四则运算,例如:.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求、的值;
②若关于的方程T有实数解,求实数的值;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则、应满足怎样的关系式?
为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出1600盒,每盒售价每提高1元,每天要少卖出20盒.
(1)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(2)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得6000元的利润,那么超市每天销售月饼多少盒?
某超市销售一种旅游纪念品,平均每天可售出20套,每套盈利40元.“十一”期间,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.要想平均每天销售这种纪念品盈利1200元,那么每套应降价多少元?
阅读下列例题:
解方程x2-|x|-2=0
解:(1)当x≥0时,原方程化为x2-x-2=0,解得x1=2,x2=-1(舍去).
当x<0时,原方程化为x2+x-2=0,解得x1=1(舍去),x2=-2.
∴x1=2,x2=-2是原方程的根.
请参照例题解方程:x2-|x-1|-1=0.
如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB),且OA、OB的长分别是一元二次方程x2-(+1)x+=0的两个根.点C在x轴负半轴上,且AB:AC=1:2.
(1)求A、C两点的坐标.
(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围.
(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,说明理由.