6个人用35天完成了某项工程的,如果再增加工作效率相同的8个人,那么完成这项工程,前后共用的天数是( )
A.30 | B.40 | C.60 | D.65 |
某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:
①买一套西装送一条领带;
②西装和领带都按定价的90%付款.
现某客户要到该服装厂购买西装20套,领带条(>20).
(1)若该客户按方案①购买,需付款________元(用含的代数式表示);若该客户按方案②购买,需付款________元(用含的代数式表示).
(2)若=30,通过计算说明此时按哪种方案购买较为合算?
上海某宾馆客房部有三人普通间和二人普通间,每间收费标准如下表所示.世博会期间,一个由50名女工组成的旅游团人住该宾馆,她们都选择了三人普通间和二人普通间,且每间正好都住满.设该旅游团人住三人普通间有x间.
(1)该旅游团人住的二人普通间有________间(用含x的代数式表示);
(2)该旅游团要求一天的住宿费必须少于4500元,且入住的三人普通间不多于二人普通间.若客房部能满
足该旅游团的要求,那么该客房部有哪几种安排方案?
客房 |
普通间(元/天) |
三人间 |
240 |
二人间 |
200 |
试验与探究:我们知道分数写为小数即,反之,无限循环小数 写成分数即.一般地,任何一个无限循环小数都可以写成分数形式.现在就以为例进行讨论:设 ,由…,可知,7.777… —0.777… =7,即 ,解方程得 于是得,.
请仿照上述例题完成下列各题:
(1)请你能把无限循环小数写成分数,即= .
(2)你能化无限循环小数 为分数吗?请仿照上述例子求解之.
正值度尾文旦柚收成之际,在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达2000元;经精加工包装后销售,每吨利润为3000元.当地一家公司收购了600吨,该公司加工厂的生产能力是:如果对文旦柚进行粗加工,每天可加工50吨;如果进行精加工,每天可加工20吨,但每天两种方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批文旦柚全部销售或加工完毕,为此公司研制了三种加工方案.
方案一:将文旦柚全部进行粗加工;
方案二:尽可能多的对文旦柚进行精加工,没有来得及加工的文旦柚在市场上直接销售;
方案三:将部分文旦柚进行精加工,其余文旦柚进行粗加工,并恰好在15天完成,
如果你是公司经理,你会选择哪种方案,说明理由。
在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:
(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:
① ;② ;③ ;④ ;
(2)如果点的坐标为(1,3),那么不等式的解集是 .
在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到每购买1元商品政府给予0.13元的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.试求:
(1)A型洗衣机和B型洗衣机的售价各是多少元?
(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?
如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米,
(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;
(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN和PQ).请根据这个等量关系,求出x的值;
(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?
甲杯中盛有红墨水若干ml,乙杯中盛有蓝墨水若干ml,现在用一个容积为50ml
的小杯子从甲杯中盛走一小杯红墨水倾入乙杯,待乙杯中两种墨水混合均匀后;从乙杯中盛
走一小杯混合液倾入甲杯中,试问,这时乙杯中的红墨水的液量和甲杯中混进来的蓝墨水的
液量相比,哪个多?
A.甲杯蓝墨水多,乙杯红墨水少 | B.甲杯蓝墨水少,乙杯红墨水多 |
C.甲杯蓝墨水与乙杯红墨水一样多甲 | D.无法判定 |
为了提升学生体育锻炼意识,某中学七年级(1)班进行了一次体育测试,测试内容为投掷实心球,老师在操场上画出了A,B,C三个区域,每人投掷5次,实心球落在各个区域的分值各不相同,落在C区得3分.墨墨,茗茗,丽丽三位同学投掷后其落点如图所示,已知墨墨的得分是19分.
(1)设投进B区域得x分,用整式表示投进A区域的得分;
(2)若茗茗的得分是21分,求投进B区域的得分;
(3)求丽丽的得分.
小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.
(1)求返回时A、B两地间的路程;
(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?
先阅读短文,然后回答短文后面所给出的问题:
对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定 表示这三个数的平均数,表示这三个数中的最小的数,表示这三个数中最大的数.例如:,,;,.
(1)请填空: ;若,则 ;
(2)若,求的取值范围;
(3)若,求的值.
如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).
(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?