"垃圾分类工作就是新时尚",为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.
(1)图中其他垃圾所在的扇形的圆心角度数是 度;
(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?
(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.
不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是
A. B. C. D.
近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经典,庆祝建党百年”为主题,分为“诵读中国”经典诵读,“诗教中国”诗词讲解,“笔墨中国”汉字书写,“印记中国”印章篆刻比赛四类(依次记为 , , , .为了解同学们参与这四类比赛的意向,某校学生会从有意向参与比赛的学生中随机抽取若干名学生进行了问卷调查(调查问卷如图所示),所有问卷全部收回,并将调查结果绘制成统计图和统计表(均不完整).
“中华经典诵写讲大赛”参赛意向调查问卷 请在下列选项中选择您有参赛意向的选项,在其后“ ”内打“ ”,非常感谢您的合作. .“诵读中国”经典诵读 .“诗教中国”诗词讲解 .“笔墨中国”汉字书写 .“印记中国”印章篆刻 |
请根据图表提供的信息,解答下列问题:
(1)参与本次问卷调查的总人数为 人,统计表中 的百分比 为 ;
(2)请补全统计图;
(3)小华想用扇形统计图反映有意向参与各类比赛的人数占被调查总人数的百分比,是否可行?若可行,求出表示 类比赛的扇形圆心角的度数;若不可行,请说明理由.
(4)学校“诗教中国”诗词讲解大赛初赛的规则是:组委会提供“春”“夏”“秋”“冬”四组题目(依次记为 , , , ,由电脑随机给每位参赛选手派发一组,选手根据题目要求进行诗词讲解,请用列表或画树状图的方法求甲,乙两名选手抽到的题目在同一组的概率.
在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间 (单位:小时).把调查结果分为四档, 档: ; 档: ; 档: ; 档: .根据调查情况,给出了部分数据信息:
① 档和 档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;
②图1和图2是两幅不完整的统计图.
根据以上信息解答问题:
(1)求本次调查的学生人数,并将图2补充完整;
(2)已知全校共1200名学生,请你估计全校 档的人数;
(3)学校要从 档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.
圆周率 是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对 有过深入的研究.目前,超级计算机已计算出 的小数部分超过31.4万亿位.有学者发现,随着 小数部分位数的增加, 这10个数字出现的频率趋于稳定接近相同.
(1)从 的小数部分随机取出一个数字,估计数字是6的概率为 ;
(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)
为庆祝中国共产党成立100周年,某中学组织全校学生参加党史知识竞赛,从中任取20名学生的竞赛成绩进行统计,绘制了不完整的统计图表:
组别 |
成绩范围 |
频数 |
|
|
2 |
|
|
|
|
|
9 |
|
|
|
(1)分别求 , 的值;
(2)若把每组中各学生的成绩用这组数据的中间值代替(如 的中间值为 估计全校学生的平均成绩;
(3)从 组和 组的学生中随机抽取2名学生,用树状图或列表法求这2名学生都在 组的概率.
某中学全校师生听取了"禁毒"宣传报告后,对禁毒人员肃然起敬.学校德育处随后决定在全校1000名学生中开展"我为禁毒献爱心"的捐款活动.张老师在周五随机调查了部分学生随身携带零花钱的情况,并将收集的数据进行整理,绘制了如图所示的条形统计图.
(1)求这组数据的平均数和众数;
(2)经调查,当学生身上的零花钱多于15元时,都愿捐出零花钱的 ,其余学生不参加捐款.请你估计周五这一天该校可能收到学生自愿捐款多少元?
(3)捐款最多的两人将和另一个学校选出的两人组成一个"禁毒"知识宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人来自不同学校的概率.
为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从 ."北斗卫星"; ." 时代"; ."东风快递"; ."智轨快运"四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成不完整的统计图,请根据统计图中的信息解答下列问题:
(1)九(1)班共有 名学生;
(2)补全折线统计图;
(3) 所对应扇形圆心角的大小为 ;
(4)小明和小丽从 、 、 、 四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是 .
即将举行的2022年杭州亚运会吉祥物"宸宸"、"琮琮"、"莲莲",将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.
(1)若从中任意抽取1张,抽得卡片上的图案恰好为"莲莲"的概率是 .
(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)
东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.
作业情况 |
频数 |
频率 |
非常好 |
|
0.22 |
较好 |
68 |
|
一般 |
|
|
不好 |
40 |
|
请根据图表中提供的信息,解答下列问题:
(1)本次抽样共调查了多少名学生?
(2)将统计表中所缺的数据填在表中横线上;
(3)若该中学有1800名学生,估计该校学生作业情况"非常好"和"较好"的学生一共约多少名?
(4)某学习小组4名学生的作业本中,有2本"非常好"(记为 、 ,1本"较好"(记为 ,1本"一般"(记为 ,这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用"列表法"或"画树状图"的方法求出两次抽到的作业本都是"非常好"的概率.
经过某路口的汽车,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两车经过该路口,恰好有一车直行,另一车左拐的概率为
A. |
|
B. |
|
C. |
|
D. |
|
看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为 .
马匹 姓名 |
下等马 |
中等马 |
上等马 |
齐王 |
6 |
8 |
10 |
田忌 |
5 |
7 |
9 |
如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点 的概率是
A. |
|
B. |
|
C. |
|
D. |
|
“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日 ,全球接种“新冠”疫苗的比例为 ;中国累计接种4.2亿剂,占全国人口的 .以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:
甲医院 |
乙医院 |
||||
年龄段 |
频数 |
频率 |
频数 |
频率 |
|
周岁 |
900 |
0.15 |
400 |
0.1 |
|
周岁 |
|
0.25 |
1000 |
0.25 |
|
周岁 |
2100 |
|
|
0.225 |
|
周岁 |
1200 |
0.2 |
1200 |
0.3 |
|
60周岁以上 |
300 |
0.05 |
500 |
0.125 |
|
(1)根据上面图表信息,回答下列问题:
①填空: , , ;
②在甲、乙两医院当天接种疫苗的所有人员中, 周岁年龄段人数在扇形统计图中所占圆心角为 ;
(2)若 、 、 三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.