如图,在矩形 中, , ,点 , 分别是边 , 上的动点,点 不与 , 重合,且 , 是五边形 内满足 且 的点.现给出以下结论:
① 与 一定互补;
②点 到边 , 的距离一定相等;
③点 到边 , 的距离可能相等;
④点 到边 的距离的最大值为 .
其中正确的是 .(写出所有正确结论的序号)
如图,在 中, , , ,点 在边 上, ,联结 .如果将 沿直线 翻折后,点 的对应点为点 ,那么点 到直线 的距离为 .
如图,抛物线与轴交于点,点,与轴交于点,且过点.点、是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点在直线下方时,求面积的最大值.
(3)直线与线段相交于点,当与相似时,求点的坐标.
如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2.则∠BCD= °,cos∠MCN= .
某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在点A处测得蒲宁之珠最高点C的仰角为45°,再往蒲宁之珠方向前进至点B处测得最高点C的仰角为56°,AB=62m,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD约为 m.(sin56°≈0.83,tan56°≈1.49,结果保留整数)
如图1为两个边长为1的正方形组成的格点图,点A,B,C,D都在格点上,AB,CD交于点P,则tan∠BPD= ,如果是n个边长为1的正方形组成的格点图,如图2,那么tan∠BPD= .
如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=
如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果,.那么m与n满足的关系式是:m= (用含n的代数式表示m).
如图,半径为6cm的⊙O中,C,D为直径AB的三等分点,点E,F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连结AE,BF,则图中两个阴影部分的面积为 cm2
如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用表示,其中x轴与边,边与,与,…均相距一个单位,则顶点的坐标为 ;的坐标为 ;(n为正整数)的坐标为 .
在平面直角坐标系中,点,,,…和,,,…分别在直线和轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点的纵坐标是_ _____.