如图,点 是 的边 上的一点,且 ,连接 并延长交 的延长线于点 ,若 , ,则 的周长为
A.21B.28C.34D.42
发现规律
(1)如图①, 与 都是等边三角形,直线 , 交于点 .直线 , 交于点 .求 的度数.
(2)已知: 与 的位置如图②所示,直线 , 交于点 .直线 , 交于点 .若 , ,求 的度数.
应用结论
(3)如图③,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 , 为 轴上一动点,连接 .将线段 绕点 逆时针旋转 得到线段 ,连接 , .求线段 长度的最小值.
如图,矩形 的四个顶点分别在直线 , , , 上.若直线 且间距相等, , ,则 的值为
A. B. C. D.
小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, 与 恰好为对顶角, ,连接 , ,点 是线段 上一点.
探究发现:
(1)当点 为线段 的中点时,连接 (如图(2) ,小明经过探究,得到结论: .你认为此结论是否成立? .(填"是"或"否"
拓展延伸:
(2)将(1)中的条件与结论互换,即: ,则点 为线段 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若 , ,求 的长.
如图,二次函数 的图象与 轴交于点 , ,与 轴交于点 ,抛物线的顶点为 ,其对称轴与线段 交于点 ,垂直于 轴的动直线 分别交抛物线和线段 于点 和点 ,动直线 在抛物线的对称轴的右侧(不含对称轴)沿 轴正方向移动到 点.
(1)求出二次函数 和 所在直线的表达式;
(2)在动直线 移动的过程中,试求使四边形 为平行四边形的点 的坐标;
(3)连接 , ,在动直线 移动的过程中,抛物线上是否存在点 ,使得以点 , , 为顶点的三角形与 相似?如果存在,求出点 的坐标;如果不存在,请说明理由.
如图,在 中, ,以 的边 为直径作 ,交 于点 ,过点 作 ,垂足为点 .
(1)试证明 是 的切线;
(2)若 的半径为5, ,求此时 的长.
如图,在四边形 中,以 为直径的半圆 经过点 , . 与 相交于点 , ,分别延长 , 相交于点 , , .则 的长是 .
如图1,四边形 的对角线 , 相交于点 , , .
(1)过点 作 交 于点 ,求证: ;
(2)如图2,将 沿 翻折得到 .
①求证: ;
②若 ,求证: .
如图, 为平行四边形 边 上一点, 、 分别为 、 上的点,且 , , 、 、 的面积分别记为 、 、 .若 ,则 .
问题探究:
小红遇到这样一个问题:如图1, 中, , , 是中线,求 的取值范围.她的做法是:延长 到 ,使 ,连接 ,证明 ,经过推理和计算使问题得到解决.
请回答:(1)小红证明 的判定定理是: ;
(2) 的取值范围是 ;
方法运用:
(3)如图2, 是 的中线,在 上取一点 ,连结 并延长交 于点 ,使 ,求证: .
(4)如图3,在矩形 中, ,在 上取一点 ,以 为斜边作 ,且 ,点 是 的中点,连接 , ,求证: .
如图,点 在以 为直径的 上,点 是半圆 的中点,连接 , , , .过点 作 交 的延长线于点 .
(1)求证:直线 是 的切线;
(2)若 , ,求 , 的长.
如图,在矩形 中, , .把 沿 折叠,使点 恰好落在 边上的 处,再将 绕点 顺时针旋转 ,得到△ ,使得 恰好经过 的中点 . 交 于点 ,连接 .有如下结论:① 的长度是 ;②弧 的长度是 ;③△ △ ;④△ .上述结论中,所有正确的序号是 .