设点P是△ABC内任意一点.现给出如下结论:
①过点P至少存在一条直线将△ABC分成周长相等的两部分;
②过点P至少存在一条直线将△ABC分成面积相等的两部分;
③过点P至多存在一条直线将△ABC分成面积相等的两部分;
④△ABC内存在点Q,过点Q有两条直线将其平分成面积相等的四个部分.
其中结论正确的是 .(写出所有正确结论的序号)
如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=3,BD=2,则CD的长为 .
梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若=2,则= .
如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于 (结果保留根号).
如图,正六边形 的边长为1,它的六条对角线又围成一个正六边形 ,如此继续下去,则正六边形 的面积是 .
把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 .
已知AD、BE是锐角△ABC的两条高,且AD、BE交于点H,若,则的值为_________.
如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,则AD= .
如图,在△ABC中,CD⊥AB于点D.下列条件:①BC2=BD•BA;②;③CD2=AD•BD.其中能证明△ABC是直角三角形的是 .
已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E, F为顶点的三角形与△ABC相似,则需要增加的一个条件是 .(写出一个即可)
如图,在□ABCD中,点P为边AB上的一点,E,F分别是PD,PC的中点,CD=2.则①EF= ;②设△PEF,△PAD,△PBC的面积分别为、、.已知,则 .