初中数学

如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.

求证:(1)△AOM∽△DMN; (2)求∠MBN的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角梯形OABC中,已知B、C两点的坐标分别为B(8,6)、C(10,0),动点M由原点O出发沿OB方向匀速运动,速度为1单位/秒;同时,线段DE由BC出发沿BA方向匀速运动,速度为1单位/秒,交OB于点N,连接DM,设运动时间为t秒(0<t<8).

(1) 当为何值时,DM∥OA?
(2)连接ME,在点M、N重合之前的运动过程中,五边形DMECB的面积是否发生变化?若不变,请求出它的值;若发生变化,请说明理由.
(3)当t为何值时,△DMB为等腰三角形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知双曲线与直线相交于A、B两点.第一象限上的点M()在双曲线上(在A点左侧).过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.

(1)若点D坐标是(-8,0),求A、B两点坐标及的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求此时M点的坐标;
(3)在(2)的条件下,设直线AM分别与x轴、y轴相交于点P、Q两点,求MA:PQ的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,⊙的半径为,正方形顶点坐标为,顶点在⊙上运动.
(1)当点运动到与点在同一条直线上时,试证明直线与⊙相切;
(2)当直线与⊙相切时,求所在直线对应的函数关系式;
(3)设点的横坐标为,正方形的面积为,求之间的函数关系式,并求出的最大值与最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,∠C=60°,AB=4,过点B作BE⊥CD,垂足为E,连结AE.F为AE上一点,且∠BFE=60°.

(1)求证:△ABF∽△EAD;
(2)求BF的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题14分)如图11,在△ABC中,∠ACB=,AC=BC=2,M是边AC的中点,
CH⊥BM于H.

(1)试求sin∠MCH的值;
(2)求证:∠ABM=∠CAH;
(3)若D是边AB上的点,且使△AHD为等腰三角形,请直接写出AD的长为________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.

(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°.

(1)根据要求用尺规作图:过点C作斜边AB边上的高CD,垂足为D(不写作法,只保留作图痕迹);
(2)在(1)的条件下,请写出图中所有与△ABC相似的三角形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题14分)如图,在等边中,于点,点在边上运动,过点与边交于点,连结,以为邻边作□,设□重叠部分图形的面积为,线段的长为

(1)求线段的长(用含的代数式表示);
(2)当四边形为菱形时,求的值;
(3)直接写出之间的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线y=-2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.

(1)填空:点C的坐标是(    ,   ),点D的坐标是(    ,    );
(2)设直线CD与AB交于点M,求线段BM的长;
(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

数学课上,张老师出示图1和下面的条件:如图1,两个等腰直角三角板ABC和DEF有一条边在同一条直线l上,DE=2,AB=1.将直线EB绕点E逆时针旋转45°,交直线AD于点M.将图1中的三角板ABC沿直线l向右平移,设C、E两点间的距离为k.
解答问题:
(1)①当点C与点F重合时,如图2所示,可得的值为       
②在平移过程中,的值为           (用含k的代数式表示);
(2)将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请补全图形,计算的值;
(3)将图1中的三角板ABC绕点C逆时针旋转α度,0<α≤90,原题中的其他条件保持不变.计算 的值(用含k的代数式表示).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知中,边上的中点,边上的点(不与端点重合),边上的点,且,延长与直线相交于点点是延长线上的点,且,联结,设.

(1)求关于的函数关系式及其定义域;
(2)联结,当以为半径的和以为半径的外切时,求的正切值;
(3)当相似时,求的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线与x轴交于点A(-2,0)和点B,与y轴交于点C(0,),线段AC上有一动点P从点A出发,以每秒1个单位长度的速度向点C移动,线段AB上有另一个动点Q从点B出发,以每秒2个单位长度的速度向点A移动,两动点同时出发,设运动时间为t秒.
(1)求该抛物线的解析式;
(2)在整个运动过程中,是否存在某一时刻,使得以A,P,Q为顶点的三角形与△AOC相似?如果存在,请求出对应的t的值;如果不存在,请说明理由.
(3)在y轴上有两点M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,请直接写出相应的m、t的值以及AM+MN+NP的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

知识背景:杭州留下有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)

(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.
①按方案1(如图)做一个纸箱,需要矩形硬纸板的面积是多少平方米?
②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板做一个纸箱比方案1更优,你认为呢?请说明理由.
(2)拓展思维:城西一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=30°。

(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第        秒时,边MN恰好与射线OC平行;在第        秒时,直线ON恰好平分锐角∠AOC。(直接写出结果);
(3)将图1中的三角尺绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题