如图,在直角梯形OABC中,已知B、C两点的坐标分别为B(8,6)、C(10,0),动点M由原点O出发沿OB方向匀速运动,速度为1单位/秒;同时,线段DE由BC出发沿BA方向匀速运动,速度为1单位/秒,交OB于点N,连接DM,设运动时间为t秒(0<t<8). (1) 当为何值时,DM∥OA?(2)连接ME,在点M、N重合之前的运动过程中,五边形DMECB的面积是否发生变化?若不变,请求出它的值;若发生变化,请说明理由.(3)当t为何值时,△DMB为等腰三角形.
如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm。 (1)若P、Q是△ABC边上的两个动点,其中点P从A沿A→B方向运动,速度为每秒1cm,点Q从B沿B→C方向运动,速度为每秒2cm,两点同时出发,设出发时间为t秒.①当t=1秒时,求PQ的长;②从出发几秒钟后,△PQB是等腰三角形? (2)若M在△ABC边上沿B→A→C方向以每秒3cm的速度运动,则当点M在边CA上运动时,求△BCM成为等腰三角形时M运动的时间.
两根电线杆AB、CD,AB=5m,CD=3m,它们的底部相距8m,现在要在两根电线杆底端之间(线段BD上)选一点E,由E分别向两根电线杆顶端拉钢索AE、CE.若使钢索AE与CE相等,那么点E应该选在距点B多少米处?
如图,长方形纸片ABCD,AD∥BC,将长方形纸片折叠,使点D与点B重合,点C落在点C'处,折痕为EF, (1)求证:BE=BF. (2)若∠ABE=18°,求∠BFE的度数. (3)若AB=6,AD=8,求AE的长.
已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点. 求证:(1)BD=AE. (2)若线段AD=5,AB=17,求线段ED的长。
如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.试说明AD+AB=BE.