初中数学

在平面直角坐标系xOy中,已知动点P在正比例函数y = x的图象上,点P的横坐标为m (m > 0).以点P为圆心,m为半径的圆交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点(D点在点C的上方).点E为平行四边形DOPE的顶点(如图).

(1)直接写出点B、E的坐标(用含m的代数式表示);
(2)连接DB、BE,设△BDE的外接圆交y轴于点Q (点Q异于点D),连接EQ、BQ.试问线段BQ与线段EQ的长是否相等?为什么?
(3)连接BC,求∠DBC −∠DBE的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知AB是⊙O的弦,OB = 2,∠B = 30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.

(1)弦长AB = ____________(结果保留根号);
(2)当∠D = 20°时,求∠BOD的度数;
(3)当AC的长度为多少时,以点A、C、D为顶点的三角形与以B、C、O为顶点的三角形相似?请写出解答过程.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC中,CD是边AB上的高,且

(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,D为等边△ABC边BC上一点,DE⊥AB于E,若BD∶CD = 2∶1,DE =,求AE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

点A、B、C在同一直线上,在直线AC的同侧作△ABE和△BCF,连接AF,CE.取AF、CE的中点M、N,连接BM,BN,MN.
(1)若△ABE和△FBC是等腰直角三角形,且∠ABE=∠FBC=90°(图1),则△MBN是______三角形;
(2)在△ABE和△BCF中,若BA=BE,BC=BF,且∠ABE=∠FBC=α,(图2),则△MBN是______三角形,且∠MBN=______;
(3)若将(2)中的△ABE绕点B旋转一定角度,(图3),其他条件不变,那么(2)中的结论是否成立?若成立,给出你的证明;若不成立,写出正确的结论并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.

(1)求EF的长度;
(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.

(1)证明:BE=CF;
(2)当点E、F在BC、CD上滑动时,四边形AECF面积是否发生变化?如果不变,求出这个定值;
(3)设BE=x,△CEF的面积为y,求y与x之间的函数关系式(不写出自变量x取值范围).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,直线轴,轴分别交于两点,以为边在第二象限内作矩形,使

(1)求点,点的坐标;
(2)过点轴,垂足为,求证:
(3)求点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是          
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是            
(3)△A2B2C2的面积是              平方单位.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:ΔABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2),(正方形网格中,每个小正方形边长为1个单位长度)

(1)画出ΔABC向下平移4个单位得到的ΔA1B1C1
(2)以B为位似中心,在网格中画出ΔA2BC2,使ΔA2BC2与ΔABC位似,且位似比2 :1,直接写出C2点坐标是              
(3)ΔA2BC2的面积是               平方单位.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:
(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证:MN2=DM·EN.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图所示),他们想在△AMD和△BMC地带种植单价为10元/米2的太阳花,当△AMD地带种满花后,已经花了500元,请你预算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,铁道口的栏杆短臂长1米,长臂长16米,当短臂的端点下降0.5米时,求长臂端点应升高了多少米?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

李华晚上在两站相距50m的路灯下来回散步,DF=50m.已知李华身高AB=1.7m,灯柱CD=EF=8.5m.

(1)若李华距灯柱CD的距离为DB=xm,他的影子BQ=ym,求y关于x的函数关系式.
(2)若李华在两路灯之间行走,则他前后两个影子PB+BQ是否会发生变化?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题