初中数学

已知:如图,在ΔABC中,AB=AC=10cm,BC=12cm,AD⊥BC于D.直线PM从点C出发沿CB方向匀速运动,速度为1 cm/s;运动过程中始终保持PM⊥BC,直线PM交BC于P,交AC于M ;过点P作PQ⊥AB,交AB于Q,交AD于N ,连接QM.设运动时间是t(s)(0<t <6),解答下列问题:

(1)当t为何值时,QM∥BC?
(2)设四边形ANPM的面积为y(cm2),试求出y与t的函数关系式;
(3)是否存在某一时刻t,使y的值最大?若存在,求出t的值;若不存在,请说明理由;
(4)是否存在某一时刻t,使点M在线段PQ的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求证:AD=BC;
(2)求证:△AGD∽△EGF;
(3)如图2,若AD、BC所在直线互相垂直,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:
(1)该反比例函数的解析式是什么?
(2)当四边形AEGF为正方形时,点F的坐标时多少?
(3)阅读合作学习内容,请解答其中的问题;
小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”
针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,Rt△ABC中,∠ACB=Rt∠,AC=2BC=2,作内接正方形A1B1D1C;在Rt△AA1B1中,作内接正方形A2B2D2A1;在Rt△AA2B2中,作内接正方形A3B3D3A2;……;依次作下去,则第n个正方形AnBnDnAn-1的边长是(     )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直角坐标系中菱形ABCD的位置如图所示,C.D两点的坐标分别为 (4,0)、(0,3).现有两动点P、Q分别从A、C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为ts.

(1)菱形ABCD的边长是   ,面积是   , 高BE的长是   .(直接填写结果)
(2)探究下列问题:
①若点P的速度为1cm/s,点Q的速度为2 cm/s.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为1cm/s,点Q的速度变为kcm/s,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形,请探究当t=4s时的情形,并求出k的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、Sn,则第4个正方形的边长是    , S3的值为  

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE.

(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;
(2)求证:BE=EC;
(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△中,∠90°,,点从点出发,沿
2㎝的速度向点移动,点从点出发,以的速度向点移动,若点分别从点同时出发,
设运动时间为,当为何值时,△与△相似?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B 两点,将△AOB绕点O逆时针旋转90°,得到△COD,

(1)若l:,E为AD的中点
①在CD上有一动点F ,求当△DEF与△COD相似时点F的坐标;
②如图②,过E作x轴的垂线a,在直线a上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点坐标;若不存在,请说明理由
(2)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l的函数解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

△OAB的坐标分别为O(0,0),A(0,4),B(3,0),以原点为位似中心,在第一象限将△OAB扩大,使变换得到的△OEF与△OAB对应边的比为2∶1,

(1)画出△OEF;
(2)求四边形ABFE的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.

求证:(1)△AOM∽△DMN; (2)求∠MBN的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°.

(1)根据要求用尺规作图:过点C作斜边AB边上的高CD,垂足为D(不写作法,只保留作图痕迹);
(2)在(1)的条件下,请写出图中所有与△ABC相似的三角形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(a),在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.
(1)点C的坐标是       ,当点D运动8.5秒时所在位置的坐标是        
(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;
(3)如图(b),另有一点E在线段AB上以同样速度由点A向点B运动,若点E与点D同时出发,问在运动5秒钟内,以点D、A、E为顶点的三角形何时与△OCD相似?(只考虑以点A、O为对应顶点的情况)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D是BC上一定点.动点P从C出发,以2cm/s的速度沿C→A→B方向运动,动点Q从D出发,以1cm/s的速度沿D→B方向运动.点P出发5 s后,点Q才开始出发,且当一个点达到B时,另一个点随之停止.图2是当时△BPQ的面积S(cm2)与点P的运动时间t(s)的函数图象.

(1)CD =        ,        
(2)当点P在边AB上时,为何值时,使得△BPQ与△ABC为相似?
(3)运动过程中,求出当△BPQ是以BP为腰的等腰三角形时的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,矩形ABCD中,CD=2,AD=3,以C点为圆心,作一个动圆,与线段AD交于点P(P和A、D不重合),过P作⊙C的切线交线段AB于F点.

(1)求证:△CDP∽△PAF;
(2)设DP=x,AF=y,求y关于x的函数关系式,及自变量x的取值范围;
(3)是否存在这样的点P,使△APF沿PF翻折后,点A落在BC上,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题